
UNIVERSITY OF CALIFORNIA

Santa Barbara

VERSOR
Spatial Computing with Conformal Geometric

Algebra

A thesis submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

MEDIA ARTS AND TECHNOLOGY

by

Pablo Colapinto

Committee in Charge:

Marko Peljhan, Chair

Curtis Roads

JoAnn Kuchera-Morin

Tobias Höllerer

March 2011

The Master’s thesis of Pablo Colapinto is approved.

Marko Peljhan

Curtis Roads

JoAnn Kuchera-Morin

Tobias Hollerer

March 2011

VERSOR: Spatial Computing with Conformal Geometric Algebra

Copyright © 2011

by

Pablo Colapinto

iii

Abstract

This Master’s thesis investigates new computer graphics synthesis techniques
made possible by the Euclidean, spherical, and hyperbolic transformational ca-
pacities of conformal geometric algebra [CGA]. An explication of the mathemat-
ical system’s geometric elements is followed by documentation of Versor – an
integrated CGA software library for immersive 3D visualizations and dynamic
simulations.

iv

v

Contents

1 Introduction: 1
1.1 Problem Statement . 2

1.1.1 Synthesis Techniques . 2
1.1.2 Multimedia Applications . 2
1.1.3 Pedagogy . 2

1.2 Goal of the Present Work . 3
1.2.1 Text . 3
1.2.2 Code . 4
1.2.3 Form . 4

1.3 Background . 5
1.3.1 History . 5
1.3.2 Characteristics . 6

2 Geometric Products 9

3 Minkowskian Metrics 15
3.1 The Null Cone . 15
3.2 The Conformal Mapping . 16

4 Groups and Transformations 19
4.1 Subspaces as Tensors . 19
4.2 Well-Chosen Planes . 20
4.3 Reflections: . 21
4.4 Rotations: . 21
4.5 Translations: . 21
4.6 Dilations: . 22
4.7 Twists: . 22
4.8 Boosts: . 24

4.8.1 Warped spaces and Curved Trajectories 26

5 Elements 28
5.1 The Meet . 28
5.2 Round Elements . 29

5.2.1 Points and Spheres . 29
5.2.2 Point Pairs and Circles . 29
5.2.3 Tangents . 30

5.3 Flat Elements . 30
5.3.1 Directions . 30
5.3.2 Flat Points . 31
5.3.3 Lines and Dual Lines . 31
5.3.4 Planes and Dual Planes . 32

5.4 Infinities . 32
5.5 An Example from Robotics . 32

vi

6 Implementation 34
6.1 Existing Software . 34

6.1.1 Features of Versor: . 34
6.2 Challenges . 36

6.2.1 Goals . 36
6.2.2 Strategy . 37

6.3 Creating The Object Oriented C++ General Reference Model 38
6.3.1 Euclidean Geometric Algebra . 38
6.3.2 Conformal Geometric Algebra . 40

6.4 Lua Code Generation . 42
6.4.1 Building Basis Tables . 43
6.4.2 Building Basic Types . 44
6.4.3 Building a Finite State Machine . 45

6.5 Adding Functionality . 46
6.5.1 Interpolations and Filtering . 50
6.5.2 The Frame Class . 50
6.5.3 The Chain Class . 50
6.5.4 The Field Class . 51

6.6 Future Work . 51
6.6.1 Optimization . 51
6.6.2 Machine Learning and Genetic Algorithms 52
6.6.3 Scriptable Interface . 52
6.6.4 Geometric Audio . 52
6.6.5 Twistors . 52

7 Conclusions 52

vii

1 Introduction:

No attention should be paid to the fact that algebra and geometry are
different in appearance.

–Omar Khayyám

L’algèbre n’est qu’une géométrie écrite; la géométrie n’est qu’une al-
gèbre figurée.

–Sophie Germain

The present work explicates 5-dimensional conformal geometric algebra [CGA] and
documents a new C++ implementation for graphics synthesis. Geometric algebra
[GA] is a combinatoric system of spatial logic based on William Clifford’s hyper-
complex algebras of the 19th century. Holistic, scalable, and filled with “common
sense”, GA integrates various methods for modelling and engineering dynamic sys-
tems. Applications exist in computer vision[4] and graphics[6, 1], neural nets[15],
DSP[23], robotics[17], optics [21], particle and relativistic physics[16], and metama-
terials research[18].1 The now classic work by the physicist David Hestenes, New
Foundations for Classical Mechanics (1986) makes a strong argument for learning
this approach by demonstrating the compactness of the math, while the most re-
cent text by cyberneticist Eduardo Bayro-Corrochano, Geometric Computing: For
Wavelet Transforms, Robot Vision, Learning, Control and Action (2010), 2 demon-
strates the expressivity of its powers for geometric reasoning. Many other refer-
ences make a similar case: with its isomorphisms, geometric algebras encapsulate
many other mathematical systems. With its outermorphisms, solutions worked out
in smaller dimensions can often be extrapolated to higher dimensions. It is an ex-
pressive logic that allows intuitive mathematical experimentation across a widening
range of disciplines. 3

Working with the algebra, physicists have developed a conformal split mapping
of a 3 dimensional Euclidean space G3 into a 5-dimensional one, G4,1, based on
Riemannian projection of 3D Euclidean space (R3) onto a hypersphere. Introduced
into the geometric algebra community by Hongbo Li, Alan Rockwood, and David
Hestenes in 2001, the conformal model greatly simplifies and generalizes calcula-
tions of general rigid body movements in Euclidean space. As a mathematical sys-
tem for describing closed form solutions within Euclidean, spherical, and hyper-
bolic geometries, conformal geometric algebra opens the door to a rich set of Möbius

1For a good overview of current research in engineering and graphics see also [14].
2see also 2001’s Geometric Algebra with Applications in Science and Engineering, eds E. Bayro-

Corrochano and G. Sobczyk and 2005’s Handbook of Geometric Computing, eds E. Bayro-Corrochano
3A rigorous morphological examination of biological forms expressed in the language of GA should be

pursued by embryologists. The orientability of the algebra is useful for describing chiralities or handed-
ness, which organic systems are particularly sensitive to. I should note an intriguing set of articles written
by C. Muses in the late 1970’s which point to hypercomplex numbers as having a unique use in modelling
biological systems. Published under the auspices of the mobile and mysterious “Research Centre for
Mathematics and Morphology,” Muses’ articles – such as the 1979 Computing in the Bio-Sciences with
Hypernumbers: A Survey – are filled with parametric lobes and coils, and argue for the specialized use of
imaginary numbers in the study of biological form. GA seems poised to contribute significantly to the
modelling of such dynamic systems and structures.

1

transformations typically restricted to the 2D plane. The operators which reflect, ro-
tate, translate, twist, dilate, and boost other elements and objects are called versors.

1.1 Problem Statement

1.1.1 Synthesis Techniques

The use of geometric algebra for exploration in graphic modelling remains a rela-
tively esoteric exercise in the larger scientific and artistic community. As a result,
many of its formal characteristics and exotic morphological powers have yet to be
explored. Hidden in the algebra are forms whose organic and mysterious character-
istics could bear more formal investigation. Great research has been done demon-
strating its powers of synthesis, especially with regards to forms and control sys-
tems generated by twist groups and motor algebras [19, 24], but hardly the same
can be said for tangent groups and hyperbolic boosts, where the literature remains
focussed on 2D constructions or coordinate-based methods, and the surface has
barely been scratched (or bent...). Artists, scientists, designers, and engineers all
stand to benefit from the increased spatial intuition these explorations support, and
the door they can offer to other domains. From emerging engineering tasks in bio-
meta- and nano- materials to artistic experiments in immersive environments and
interactive installations, the modelling of dynamic systems in these domains could
witness an acceleration of innovation through the sharing of new CGA synthesis
techniques across discplines.

1.1.2 Multimedia Applications

The specific 5D conformal model discussed here was introduced very recently (2001)
– and computer graphics applications that leverage its expressivity are few. Because
of the challenges in implementing an efficient system (see section 6.2), and the steep
curve in re-learning physics in terms of the algebra, these applications have not yet
been fully integrated into high-performance multimedia applications, which would
allow researchers to engage with the algebra in diverse ways. Most applications em-
phasize scripting techniques which help users learn the algebra, or optimize its im-
plementation – efficient CGA software complete with flexible data flow and signal
processing capabilities, user interfaces for fast prototyping, and built-in dynamics
and camera navigation are rare. A language of extension and orientation of form
and space, GA is an environment which must be entered to be understood. Needed
are more applications designed for real time immersive environments that allow re-
searchers to realize novel multimodal experiences.

1.1.3 Pedagogy

Even with a growing base of adopters, geometric algebra is still largely undertaught,
and only a handful of schools4specialize in its advancement. While there are a few

4Cognitive Systems at Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Prak-
tische Mathematik: http://www.ks.informatik.uni-kiel.de; Cambridge University Geometric Alge-

2

excellent textbooks and dissertations5 available introducing the logic of GA, the topic
of hypercomplexity itself remains distant to many multimedia systems engineers.
As academia turns towards the quantum and cellular scales of the nanoworld, in-
creased collaboration between biologists, programmers, and physicists will benefit
from a common language for spatial dynamics. Modern day graphics systems are
an amalgam of matrix, vector, and tensor algebras, a fast but jerry-rigged system
which makes it difficult to build higher dimensional intuition and obstructs the typ-
ical graphics-based experimenter from making the leap into quantum calculations
or nth-order dynamics. Hestenes and others argue that the logical system of geo-
metric algebra naturally facilitates this transition for students.6

1.2 Goal of the Present Work

1.2.1 Text

This paper advances the pedagogical program of geometric algebra by de-mystifying
its logic. The synthesis of shapes and environments is accompanied by a strategy for
understanding these shapes and environments. Some of the explicatory work be-
low, particularly Sections 4 and 5 which anatomize various elements of CGA, follows
the textbook Geometric Algebra for Computer Science by Leo Dorst, Stephen Mann,
and Daniel Fontijne. Sections 2 and 3 draw mostly from the fundamentally intu-
itive paper Geometric Algebra Primer by Jaap Supter (available online), and clear es-
say Generalized Homogeneous Coordinates for Computational Geometry by Hongbo
Li, David Hestenes, and Alan Rockwood, as well as various texts by Eduardo Bayro-
Corrochano on the conformal model. All of these works have good introductions
to the spaces discussed in this thesis. The particular introduction developed here
offers some new techniques for form building, such as affine combinations of point
pairs and fluid-like tangent fields. Elaborating on methods presented in the text-
book by Dorst et al [6], an outline of the implementation of Versor follows the formal
investigation. Strategies from other texts are also included and referenced in an ef-

bra Research Group: http://www.mrao.cam.ac.uk/~clifford/; Centre for Image Technology and
Robotics: http://www.citr.auckland.ac.nz; CINVESTAV in Guadalajara; Department of Physics in Ari-
zona State University: http://geocalc.clas.asu.edu/; Embedded Systems and Applications Group,
University of Technology, Darmstadt, Germany; Intelligent Systems Lab University of Amsterdam:
http://www.science.uva.nl/research/isla/; Geometric Modeling and Scientific Visualization Research
Center, King Abdullah University of Science and Technology, Saudi Arabia.

5see the dissertations by D. Fontijne, D. Hildenbrand, R. Wareham
6The pedagogical bent of those who promote geometric algebra cannot be overemphasized. Building

a common language was the main motivation for William Clifford’s research, as it was David Hestenes’,
who took up the mantle of Clifford’s discoveries and served as their torch-bearer through the late 20th
century. He continues in Clifford’s tradition of battling errors of ’common sense’. In a 1985 essay called
“Common Sense Concepts About Motion”, co-written with Ibrahim Abou Hallouna, Hestenes classifies
the various misunderstandings of college students regarding force, creating a taxonomy of bad intuition.
Geometric algebra, one presumes, could be employed to help all that (though it is not mentioned in that
text). This notion of thinking the right way is inextricably tied to the primary aims of geometric methods,
and was a cornerstone of Descartes philosophy when he developed his coordinate system in an appendix
to Discourse on Method. Since its resurgence, Geometric algebras have been constantly referred to as a
“better” way to think about spatial relationships – e.g. a 2001 lecture by nuclear engineer Timothy Havel
was called “Geometric Algebra: Parallel Processing for the Mind”.

3

fort to build a clear and concise picture of the mathematical system.

1.2.2 Code

Versor is a C++ graphics-synthesis toolset for exploring new techniques in the ma-
nipulation of virtual forms and the activation of dynamic environments. It imple-
ments conformal geometric algebra through an efficient and integrated multime-
dia platform, low-level enough for “serious” applications and high-level enough for
“user friendly” functionality. It simplifies experimental exploration in a range of
contexts, puts some of the more exquisite features of CGA into the hands of digital
practitioners, and can be used for both artistic and engineering-based design. Inte-
grated with various dynamic solvers (including Verlet integration and semi-Lagrangian
Navier-Stokes methods), a graphics user interface library (GLV7) and an audio syn-
thesis library (Gamma8), Versor can be compiled as a stand alone application or
as an external library. It incorporates many compositional techniques for analysis
and synthesis of dynamic forms and structures, some drawn from the CGA research
landscape and some introduced for the first time, such as templated “Hyper Fluids”
(see Section 6.5.4). Versor aims to provide a basis for research requiring the visual-
ization of complex fields such as those found in quantum electrodynamics, gauge
theories, lorentz fields, curvature tensors, and morphogenetics. Potential uses in-
clude live performances, immersive environments, multimodal interfaces, molecu-
lar modelling and crystallography, morphological studies, hyperbolic geometry, and
dynamic physics simulations.

1.2.3 Form

Using Versor to generate figures in the text below, we will explore the shape of the
algebra, the shape of the space it represents, and the shape of some of the envi-
ronments and inhabitants it can generate. The examples explore of formulations
through transformation and contribute to the experimental arena of GA-based syn-
thesis. Focussing on the particular generative power of twist motors and tangent
boosts, it is hoped that such formal explorations could inspire a range of approaches
to artistic and scientific modelling, where geometric algebra is still largely unused
but likely to be soon, such as multimedia engineering, materials engineering and
bioengineering9.

7Graphic Library of Views, an OpenGL user interface library, was developed by Lance Putnam, Graham
Wakefield, and Eric Newman at UCSB. Url: http://mat.ucsb.edu/glv/

8A generic synthesis library following a data flow model. Developed by Lance Putnam. Url:
http://mat.ucsb.edu/gamma/

9For a possible hint at the future of geometric algebra in Materials sciences, see Marco Ribeiro’s recent
work on “Moving Media” [18] and cloaking.

4

1.3 Background

1.3.1 History

Towards the end of the 19th Century, William Clifford became interested in creat-
ing an algebraic logic that could fully express the basic spatial concepts: magnitude,
direction, area, volume. An expert at extrapolating abstract principles from simple
concepts,10 Clifford built a logic of restoration and reduction (an algebra) that fused
Hermann Grassman’s associative algebra of extensions (which builds higher dimen-
sional vector spaces from lower ones) with William Hamilton’s invertible algebra of
rotations (the quaternions, which can spin vectors in 3D space). Because of their
ability to encapsulate both dimension and transformation, Clifford referred to his
algebras as geometric algebras.11

Clifford died young, and his plan for a unified language for spatial relationships
was not fully realized: at the end of the 19th century, the battle for a mathemat-
ical language of physics was fought between followers of Hamilton’s quaternions
and of Josiah Willard Gibbs’ vector analysis. Gibbs (and Heaviside) won out, and
high schools and universities today teach physics using the language of vectors.12

Still, because of their usefulness in the spin-centric world of quantum physics, Clif-
ford geometric algebras were eventually developed into a geometric calculus flexible
enough to be used within a variety of scientific scales and disciplines, from quanta
of photons to gravitational fields. In the search for symmetries of the physical world
– properties that are invariant under certain transformations – geometric algebras
have proven irresistably coherent systems for modelling the natural laws.

10For an eye-opening example of Clifford’s particular form of thinking see The Common Sense of the
Exact Sciences, published after his death in 1879. Clifford constructs his explications in a manner that
belies how they become complicit in his algebra – that is, first by a chapter on Number, then on Space,
Quantity, Position, Motion and Mass. The work remains unfinished, partially completed by editors, and
the chapter on Mass does not exist. Still, that Clifford’s systematic approach to thinking is mirrored in the
structure of his algebra is obvious and elegant. This measured and designed logic behind his mathemat-
ical structure was the result of Baconian methods - an attempt to articulate exactly the phenomenon of
spatial relationships.

11Today’s geometric Aagebra is more specifically a nondegenerate subset of the much more general
Clifford Algebra, though some authors prefer an more general understanding of GA as a method of repre-
sentation: for instance, Rida Farouki (at UC Davis) writes, “Informally, we may consider any space whose
elements are subject to sum and product operations as constituting a geometric algebra, if the operations
admit simple geometrical interpretations. Thus the first geometric algebra was probably the practice, in
ancient Greece, of regarding products of two and three numbers as areas and volumes.”[11]Of course, for-
malized algebra was organized much later by al-Kwharizmi, and the logical union of geometrical concept
with algebraic symbol has taken millenia for humans to master. We are still confounded by it.

12The term “vector” itself comes from Hamilton’s notion of a “pure” quaternion. See footnote 19.

5

1.3.2 Characteristics

Geometric Concept Algebraic Representation Dimension
Magnitude Scalar 0
Direction Vector 1

Area Bivector 2
Volume Trivector 3

Table 1: Basic Elements of Geometric Algebra in R3

Geometric algebras are built with a few simple rules but possess powerful com-
binatoric properties which facilitate both analysis and synthesis of n-dimensional
spaces. They combine vector, matrix, and tensor algebras in one algebraic system.
13 Physicists point to its "unifying" capacities in this regard. 14

Complex systems – algebras included – are often built from collections of simple
rules. Modern physical sciences rely upon the assumption that much of the uni-
verse’s demonstrated complexity can be coordinated by just a few symbols. Symbol-
ically, geometric algebra is not very complex at all, and its axiomatic logic is clear
and concise, like a good algebra should be. As such, it operates at a high level of
geometric abstraction when developing equations.

GA provides a mathematical structure for operating with a logic of transforma-
tions, or perturbations. Below is summary of some of its nice expressive benefits:

Isomorphisms: Tensor, vector, and matrix algebras are all embedded through char-
acteristics shared with group theory and lie algebras. Complex numbers, Plücker
coordinates, Dirac and Pauli Matrices, and the symmetries of various particles
as described by lie groups and their algebras have been shown to be isomophic
to, and easily represented by, various metrics of GA. These isomorphisms are
critical to the successful promotion of GA; different fields of science could po-
tentially use the same mathematic symbols, bridging gaps between quantum
physicists and biologists, for instance.

Outermorphisms: Discoveries made with simpler elements in lower dimensions
can often be generalized to higher dimensions. The logic is designed to be ex-
trapolated meaningfully, and the outermorphic properties of the algebra allow
for this. This helps in building intuition and experimenting with algorithms.

13One might loosely argue that this integration advances aims to systematize the triplet symmetries
of the physical world: Force (Vector)!→Structure(Matrix)!→Function(Tensor). Some other mathematical
structures that are closely related include Lie algebra–which manipulates groups of small perturbations
to create continuous transformations – and combinatorics, which analyzes numerical permutations.
Purely mathematical analyses of geometric algebras also usually involve concepts from group theory,
and it has been shown to embed more specific concepts like screw theory, gauge theory, and Boolean
logic. These parallels come from far-reaching isomorphic properties of the system.

14For instance, it is currently being adapted for head-to-foot robot control, artificial intelligence and
computer vision by Eduardo Bayro-Corrochano of Cinvestav in Guadalajara. One should note there is
also a U.S. patent (by Hestenes and Rockwood) out on the use of conformal geometric algebra for robotic
applications . . . though an examination of what exactly that limits would be an interesting paper in itself.
The conformal mapping is, at its core, just a quadratic equation.

6

Automorphism: Some elements within the algebra, known as versors or rotors or
spinors, can be used to compose transformations upon other elements. These
versors form a closed automorphic group, such that multiplying them together
will return another member of the group. This powerful structure allows for
transformations to be concatenated through multiplication as is done in ma-
trix algebra. As we will see in exploring the conformal model, the complete
set of Euclidean and conformal transformations are possible with the versor
construction: involutions, inversions, translations, rotations, screw motions,
dilations, and transversions.

Diffeomorphisms: The general covariance of GA allows solutions to problems to be
solved outside any particular coordinate system: natural laws can be thought
of in their purely geometric form and then placed within some arbitrary coor-
dinate system afterwards.

Dualities: Calculating relationships between dual representations is a consistent,
intuitive, and simple process. To calculate the (Hodge) dual, one divides out
the enclosing space (multiplies by the inverse of the pseudoscalar tangent
space). Similarly, because of duality, multivectors can be defined directly or
indirectly. Many simplifications to complex problems are provided by duality,
specifically in complex analysis of vector fields (and, now, higher dimensional
fields).

Perturbations: The aforementioned automorphic group of versors can be gener-
ated from two-dimensional bivectors, which can be linearly added and weighted,
allowing complex twisting motions to be interpolated using common Bezier
techniques. This introduces a novel differential calculus of continuous defor-
mations that is isomorphic to the Lie algebras, yet more easily navigated.

Representations: Elements of the algebra serve as both operators and objects in a
consistent and predictable way. One can, for instance, construct a perturba-
tion operator that is itself perturbed by another operator. This greatly sim-
plifies dynamic modelling by providing a straight forward linear approach to
creating higher order phenomena.

Chirality: The anticommutivity of the algebra powers its orientability. Elements
beyond simple vectors have directions: circles spin clockwise or counterclock-
wise; screws are right-handed or left-handed. This language of symmetri-
cal properties makes GA particularly suitable for describing polarity-sensitive
phenomena, such as biomolecular interactions and bianisotropic materials.

5D conformal geometric algebra has its own particular characteristics

• Euclidean, homogenous, and conformal spaces are contained in one algebraic
system. A simple substitution of the basis representation of infinity allows for
simultaneous hyperbolic (negatively curved), spherical (positively curved), and
Euclidean (straight) spaces. This enables multiple ways to design, navigate

7

and “carve up” a space. Many applications benefit from working in alterna-
tively curved spaces.15 For instance, in Euclidean geometry, the number of
polygons that regularly tessellate a space is limited. This is not the case in
hyperbolic (negatively curved) space.

• Rich expression through disambiguation of the conceptual difference between
a point in space and vector in space, and different representations for differ-
ent kinds of vectors. The 3D Cartesian system “works” by using vectors to de-
scribe points in space, confusing the two, since it considers vectors as both
forces and locations. In the 5D conformal model of space, the relationship is
precisely clarified: points are null vectors. Non-null vectors themselves can
represent directions, tangents, or normals, and each type of vector behaves
differently under various transformations.

• The inner product between two points returns the square of their Euclidean
distance. This is very natural for describing the basic properites of many phys-
ical fields, for instance, since the inner product of any point with another point
returns a vector potential. It also makes sense in a more general signal pro-
cessing sense – the square of deviations are what are summed.

• Useful geometric entities such as spheres and circles are introduced as basic
elements of the algebra, in addition to vectors. Furthermore, these entities
can be real or imaginary.

• Novel relationships can be explored, such as the sphere orthogonal to two
other spheres16. Some of these novel features present new ways of analyzing
statistical properties of a system, and have implications for topological mod-
elling.

15The Universe is one such application . . .
16Dorst et al have termed such orthogonal round elements plunges. They are a dual representation of

the meet.

8

2 Geometric Products

We now proceed to do something which must apparently introduce
the greatest confusion, but which, on the other hand, increases enor-
mously our powers.

-William Clifford

The GA system of spatial relationships is orchestrated by three basic operations: the
inner, outer, and geometric products. Here we present these combinatoric aspects
of geometric algebra relevant to our discussion.17 A space is spanned by basis vec-
tors - in 3D typically expressed as x, y, z axes. Here we write with an e1, e2, e3 basis
notation. Some authors write σ1, σ2, σ3.

Figure 2.1: Basis 1-blades e1,e2, and e3 in G3 represent di-
rected magnitudes (e.g. x, y and z). Linear combinations of
these basis blades define a vector: v =αe1 +βe2 +γe3.

Figure 2.2: Basis 2-blades e12,e13, and e23 in G3 represent di-
rected unit areas. Linear combinations of these basis blades
define a bivector: B =αe12 +βe13 +γe23.

Figure 2.3: The basis trivector e123 in G3 is also known as the
pseudoscalar I . As the highest grade blade I is sometimes
referred to as the tangent space. Multiplying elements by I−1

(i.e. dividing out the tangent space) returns their dual rep-
resention. In G3 the bivectors and vectors are dual to each
other: v I−1 = B and B I−1 = v . Typically one writes v∗ = B
and B∗ = v .

Figures 2.1 through 2.3 depict the various elements of an orthononormal frame
that spans a 3-dimensional space. The frame is comprised of three basis vectors e1,
e2, e3 depicted in Figure 2.1. Figure 2.2 depicts the various bivectors contained
within the space. Figure 2.3 depicts the trivector that is defined by the space itself.

17For several good introductions to to the logic of GA please see the references [7, 6, 10]. Additionally,
papers on Clifford algebras, quaternions, spinors, lie algebras, inversive geometry, complex analysis all
apply here and can help round out the discussion.

9

Input a Input b Output

1 0 1

1 1 0

0 0 0

Table 2: The bitwise XOR “truth table” measures similarity of inputs.

blade bits grade

α 000 0

e1 001 1
e2 010 1
e3 100 1
e12 011 2
e13 101 2
e23 110 2
e123 111 3

Table 3: Binary Representation of Basis Blades in G3

These elements can be combined through three basic operations: the inner, outer
and geometric products.

To understand these operations, it helps to think digitally. Daniel Fontijne made
a fundamental connection between a particular simple digital binary operation and
the geometric product. Let’s take a look at this binary operation XOR: the exclusive-or.

It is commonly diagrammed as this:

Two binary numbers, 110 and 010 are compared bitwise. That is, first we com-
pare the right most bits, then the middle bits, then the left most bits. For each pair,
we are only interested in whether the bits are different or the same. If they are dif-
ferent, we return a 1. If they are the same we return a 0. Bitwise operations can be
presented in a truth table:

Now, consider Table 3. The first thing to notice is that with three bits we can fully
represent the different graded elements of three dimensional space, as illustrated
in in Figures 1 - 3. That is, the different combinations of 1s and 0s of three bits

10

represent the various basis elements of our three dimensional space. Every possible
combination of “on” and “off” coincides with a particular basis blade. The number
of 1s in each digital representation tells us the grade of the blade.

In the language of mathematics, we say an n-dimensional vector space V n gen-
erates a “graded” algebra Gn (sometimes written Gn or C l n) which is composed of
dimensions 0 through n.

A set of n linearly independent 1-blades (e.g. x, y, z or e1,e2,e3 or σ1,σ2,σ3) form
a basis that span a space (e.g Euclidean R3). These basis elements can be combined
to form 2-blades, etc, up to n-blades. Subspaces of dimension n−1 are linear combi-
nations of basis blades weighted with coefficients α,β,γ, We are currently most
familiar with the 1D subspace of vectors, though as we’ll see higher graded elements
exist naturally within the algebra. Thus, in R3, with basis blades e1,e2,e3, a vector a
can be written:

a =αe1 +βe2 +γe3 (2.1)

More generally, a vector in Rn :

a =!v = ai ei =
n∑

i=1
si ei (2.2)

Such a vector is a subspace of grade 1, or a 1-blade. Grade 0 elements of no di-
mensionality also exist within the space – these are the scalar numbers α,β,γ,etc.
The highest dimensional space represented in the set isn’t really a subspace but
rather a tangent space and its representation is called the pseudoscalar. It is ex-
pressed with the symbol I . In R3, with basis e1,e2,e3, the pseudoscalar I is a 3-blade,
and so is of grade 3 and can be identified thus:

I =
n∧

i=1
ei = e1 ∧e2 ∧e3 = e123 (2.3)

The wedge product used here comes from Grassman’s typically overlooked cal-
culus of extensions18, wherein elements of a higher dimensionality can be spanned
by elements of a lower dimensionality. It is possible to write

ei ∧e j =
{

ei j i &= j

0 i = j
(2.4)

in which case two different grade 1 elements wedge together to form a new grade
2 element called a bivector, which in R3 is a 2-blade (in higher dimensional spaces,
not all grade 2 elements are 2-blades). Notice that if the two wedged elements are
the same, the result is 0, as a blade cannot be wedged with itself. Most critical to the
logic of the whole geometric algebraic system is that the wedge (sometimes called
the outer or exterior) product is anticommutive, such that

a ∧b =−b ∧a (2.5)

18Dorst et al refer to Forder’s 1941 The Calculus of Extension for a thorough examination of this extrap-
olation technique.

11

which introduces the powerful notion of orientability to our mathematical un-
derstanding of space, and which distinguishes geometric algebra from algebraic ge-
ometry. Vectors are directed magnitudes, they point left or right. Similarly, bivectors
are directed areas - they are made clockwise or counterclockwise depending on the
order (a ∧b or b ∧a) used to created them. Trivectors, like the pseudoscalar I of R3,
also inherently spin in one of two directions.

It follows for R3 that

e12 = e1 ∧e2 =−e2 ∧e1 =−e21 (2.6)

e13 = e1 ∧e3 =−e3 ∧e1 =−e31 (2.7)

e23 = e2 ∧e3 =−e3 ∧e2 =−e32 (2.8)

and so swapping the order of neighboring numbers in a base is possible if ac-
companied with a multiplication by -1. We can see this used, for instance, in show-
ing how the geometric product gets reduced after distribution: Multiplication of vec-
tors a = α1e1 +β1e2 +γ1e3 and b = α2e1 +β2e2 +γ2e3 can be distributed the usual
way as:

a ∗b =
s ymmetr i c par t

︷ ︸︸ ︷
α1α2 +β1β2 +γ1γ2

+ (α1β2 −β1α2)e12 + (α1γ2 −γ1α2)e13 + (β1γ2 −γ1β2)e23︸ ︷︷ ︸
as ymmetr i c par t

(2.9)

a ∗b = a ·b︸︷︷︸
s ymmetr i c

+ a ∧b︸ ︷︷ ︸
as ymmetr i c

(2.10)

which is a quaternionic spinor, a group of 4 terms composed of a symmetric (inner,
interior, or commutative) scalar product of grade 0 and asymmetric (outer, exterior,
anti-commutative, or wedge) bivector product of grade 2. The reader may recognize
the familiar "dot" and "cross" products from vector analysis, the former a measure
of the similarity or parallelism between two vectors and the latter a measure of the
distinguishability or othogonality of the two vectors. Both concepts are contained in
the geometric product. 19Such linear combinations of subspaces of various grades
are known as Multivectors. This particular multivector - a scalar plus a bivector -
is called a spinor or rotor. More specifically, the vector product in G3 of two unit
vectors produces a quaternion, a type of rotor or spinor that can be used to generate
a 3D rotation. As we will see shortly, in higher dimensional algebras other types of
spinors besides the quarternion exist which can generate different transformations.

19The cross product from vector analysis is dual to the wedge product of two vectors in G3. In the battle
over a common language for Physics, Gibbs and Heaviside’s vector analysis decomposed these symmetric
and asymmetric parts into separate operations; the term "vector" itself comes from Hamilton’s work with
quaternions, and comes from the notion of a “pure” quaternion – that is, a quaternion without a scalar
part.

12

∗ s e1 e2 e3 e12 e13 e23 e123

s s e1 e2 e3 e12 e13 e23 e123

e1 e1 s e12 e13 e2 e3 e123 e23

e2 e2 −e12 s e23 −e1 −e123 e3 −e13

e3 e3 −e13 −e23 s e123 −e1 −e2 e12

e12 e12 −e2 e1 e123 −s −e23 e13 −e3

e13 e13 −e3 −e123 e1 e23 −s −e12 e2

e23 e23 e123 −e3 e2 −e13 e12 −s −e1

e123 e123 e23 −e13 e12 −e3 e2 −e1 −s

Table 6: Cayley Product Table for G3

A subspace of grade k in Rn :

A =

(n
k

)
∑

i=1
ai ei = ai ei (2.11)

where
(n

k

)
= n!

(n−k)!k ! which specifies the number of k-blades in an n-dimensional
space.

· e1 e2 e3

e1 1 0 0
e2 0 1 0
e3 0 0 1

Table 4: R3 Inner Products

∧ e1 e2 e3

e1 0 e12 e13
e2 −e12 0 e23
e3 −e13 −e23 0

Table 5: R3 Outer Products

e1 ·e1 = e2 ·e2 = e3 ·e3 = 1 (2.12)

e1 ·e2 = e1 ·e3 = e2 ·e3 = 0 (2.13)

Shorthand from Tensor analysis, one borrows the Kronecker Delta Function:

e j ·ek =
{

0, j &= k;

1, j = k;
(2.14)

With this information, we can produce a Cayley Product Table For R3 (Table 6).

And out of this we can demonstrate that the geometric product of two vectors is
a quaternion. More specifically, quaternionic spinors are ratios of vectors in R3.

13

Figure 2.4: Algorithmic anatomy of a quaternion R = a
b = ab−1 = s +αe12 +βe13 +

γe23. Solid lines represent multiplication. Gray nodes represent instances of a sign
change (multiplication by -1). Dotted lines indicate simple summation and reduc-
tion of terms.

Product Symbol Signification Relation

inner ' or · contraction (“dot”) a ·b = 1
2 (ab −ba)

outer ∧ expansion (“wedge”) a ∧b = 1
2 (ab +ba)

geometric ∗ ratio ab = a ·b +a ∧b

commutator × linear differential a ×B = 1
2 (aB −B a)

Table 7: Some Basic Operations in Geometric Algebra

Notice there is no cross product per se as there is in vector analysis (the symbol
for the cross product instead signifies a commutator product), and the meaning of
the cross product is supplanted by the extension “wedge” product.20

20The cross product and the wedge product are dual to each other in 3 dimensions.

14

3 Minkowskian Metrics

“The paradox is now fully established that the utmost abstractions
are the true weapons with which to control our thought of concrete
fact.”

-Alfred North Whitehead

3.1 The Null Cone

Figure 3.1: The R1,1 metric
is Minkowskian, with e2

+ = 1
and e2

− = −1 . Rotations
in the Minkowski plane
E = e+ ∧ e− are lorentzian
(dotted lines). The "null
cone" (dashed lines) is the
set of vectors whose direc-
tions are invariant under
the transformation.

The geometry of the following defining relations are depicted in Figure 3.2. Con-
sider a space where one of the basis vectors squares to -1 instead of 1. This is known
as a Minkowski space or Minkowski metric of signature R1,1.

· e+ e−
e+ 1 0
e− 0 -1

Table 8: Minkowski Metric of R1,1

One then creates a null basis by defining two new basis elements o and ∞ in
terms of e+ and e−.

∞= e−−e+ o = .5(e−+e+) (3.1)

e+ = o − .5∞ e− = o + .5∞ (3.2)

Figure 3.2: A null basis for
2D Minkowski space can
be defined through linear
combinations of e− and e+.

such that o2and ∞2 both equal 0. This allows the creation of an alternative
Minkowski metric:

15

· o ∞
o 0 -1
∞ -1 0

Figure 3.3: A null metric (degenerate) basis.

As we will explore, this new basis will represent our origin and infinity. In the
literature on conformal geometric algebra, o and ∞ are sometimes written as e and
ē or n and n̄, and the defining equations with the original basis are not always the
same. The end result, however, is usually the same: two basis blades that lie on the
null cone.

Transformations in a vector space with Minkowski signature (n,1) do not behave
as they do in a Euclidean metric (see Figure reffig:mnkplane). For instance, in 2
dimensional R1,1 with basis 1-blades e+ and e−, rotations of a vector αe+ +βe−on
the Minkowski plane E (where E = e+ ∧ e−) are Lorentzian. These basic rotations
on the Minkowski plane or E-plane spanned by its basis vectors e+ and e− are not
elliptical but hyperbolic. 21

We can combine this Minkowski metric with our Euclidean metric as in Table 9
below,

· e1 e2 e3 e+ e−
e1 1 0 0 0 0
e2 0 1 0 0 0
e3 0 0 1 0 0
e+ 0 0 0 1 0
e− 0 0 0 0 -1

Table 9: A nondegenerate basis.

· o e1 e2 e3 ∞
o 0 0 0 0 -1
e1 0 1 0 0 0
e2 0 0 1 0 0
e3 0 0 0 1 0
∞ -1 0 0 0 0

Table 10: A null basis.

which defines our R4,1 metric by the Minkowski Sum:

R4,1 =R3 ⊕R1,1 (3.3)

Li, Hestenes, and Rockwood refer to this sum as the conformal split.[10]

3.2 The Conformal Mapping

With this new basis, one defines a parameterized point in space: we take a common
Euclidean vector, and add in the two new bases o and ∞. We add a normalized
amount of o to homogenize the space (o = 1), and a weighted amount of ∞. This

21Known as Lorentz transformations, the hyperbolic trajectories they carve out were labelled world-
lines by Minkowski since they are the virtual representation of the fundamental property of the metric
of the space. This is a good example of geometry as described by Klein’s Erlangen Program, wherein
the fundamental property of a space is defined by how things move through it, i.e. with what invariant
properties.

16

critical value of ∞ is set to one-half the square of the original vector. Thus our new
unique point p is:

p = o +x + 1
2

x2∞ (3.4)

with the Euclidean part written in bold as is the custom in GA texts. Choosing
such a quadratic parameterization of the value of ∞ basis blade creates a conformal
mapping that projects or lofts our Euclidean space along the new null cone defined
and added in Equations 3.1and 3.3 respectively.22Equation 3.4 creates a null vector
in our algebra of R4,1 such that p ·p = 0. We leave the proof of this nullification to the
references[10].

Figure 3.4: The Hyperplane and the
Horocycle of R2,1. A vector p in the
Rn+1,1 metric can be divided into its Rn

and R1,1 components: p = an +β∞+
αo. Setting α to 1 defines the hyper-
plane of all normalized vectors. Setting
β to 1

2 an
2 such that p2 = 0 defines the

horocycle (if n = 1) or horosphere (in
higher dimensions) as the set of nor-
malized null vectors with quadratic re-
lation to ∞. These null vectors of the
horosphere in Rn+1,1 represent points
in Rn .

This new representation of a point is different from a pure Euclidean vector. We
will see that many other types of geometric elements are naturally encoded in the
subspaces of R4,1, including real and imaginary circles and spheres.23 Table 11 on
the next page is a comprehensive list of the most commonly used constructions.
Before we explore those elements, however, the following section will focus on the
various kinds of bivectors available to us in the conformal model.

22One might notice that, essentially, as first order expansion of d x , our new point measures its relation
to the global space by including its own differential. This creates a highly localized set of information that
is leveraged by operations later on.

23Though typically used to project onto a Riemann sphere from the complex plane, or here to project
3D space onto a hypersphere, the conformal mapping is also possible in any dimension: for instance, to
map 4-dimensional spacetime to 6 dimensions.

17

Graphic Symbol Geometric State Grade(s) Algebraic Form Abbr.

Scalar 0 α Sca

Vector 1 a =αe1 +βe2 +γe3 Vec

Bivector 2 B = a ∧b Biv

Trivector 3 I 3 = a ∧b ∧c Tri

Point 1 p = o +a + 1
2 a2∞ Pnt

Point Pair 2 τ= pa ∧pb Par

Circle 3 κ= pa ∧pb ∧pc Cir

Sphere 4 Σ= pa ∧pb ∧pc ∧pd Sph

Flat Point 2 Φ= p ∧∞ Flp
Line 3 Λ= pa ∧pb ∧∞ Lin

Dual Line 2 λ= B +d∞ Dll
Plane 4 Π= pa ∧pb ∧pc ∧∞ Pln

Dual Plane 1 π= n +δ∞ Dlp

Minkowski Plane 2 E = o ∧∞ Mnk

Direction Vector 2 t∞ Drv

Direction Bivector 3 B∞ Drb

Direction Trivector 4 I3∞ Drt

Tangent Vector 2 ot Tnv

Tangent Bivector 3 oB Tnb

Tangent Trivector 4 oI 3 Tnt

Rotor 0, 2 R = e−
θ
2 B = cos θ

2 − si n θ
2 B Rot

Translator 0, 2 T = e
d
2 ∞ = 1− d

2 ∞ Trs

Motor 0, 2, 4 M =eB+d∞ Mot

Dilator 0, 2 D =e
λ
2 E = cosh λ

2 + si nh λ
2 E Dil

Boost 0, 2 B =eot = 1+ot Trv

Table 11: Basic elements of conformal geometric algebra and their algebraic con-
structions. The graphic symbols on the left are introduced to help reference the ap-
pendix of operations. Bold symbols represent Euclidean elements, with lowercase
letters representing 1-blade vectors as is the custom in geometric algebra texts.

18

4 Groups and Transformations

“Formlessness is proof against the prying of the subtlest spy and the
mechanations of the wisest brain.”

Sun Tzu

4.1 Subspaces as Tensors

We have seen that the anticommutivity of the wedge product results in an oriented
algebra. This notion of a polarity to the way things combine can also be seen in
three grade-dependent properties known as reversion, involution, and conjugation.
Tensor analysis includes descriptions for whether matrices are symmetric and her-
mitian (invariant under reversion) or skew-symmetric and anti-hermitian (antiau-
tomorphic under reversion). Similarly, in geometric algebras we classify how partic-
ular grades flip their signs under self-transformations. The Table below reveals how
the different grades represent different kinds of tensors. Clifford conjugation can
be considered a logical AND comparison of reversion and involution. The pattern
repeats every 4 grades.

Grade of Blade ReversionX !→ X̃ InvolutionX !→ X̂ Conjugation X !→ X̄

0 + + +

1 + - -

2 - + -

3 - - +

4 + + +

5 + - -

Three simple algorithms can be used to determine this pattern, using k as the
grade of the blade.

Reversion X !→ X̃ :

X̃ =−1
k∗(k−1)

2 X (4.1)

Involution X !→ X̂ :
X̂ =−1k X (4.2)

Conjugation X !→ X̄ :

X̄ =−1
k∗(k+1)

2 X (4.3)

With the reversion operator we can define the inversion of a multivector X !→
X −1.

X −1 = X̃

||X X̃ ||
(4.4)

19

Since we have defined the product of two geometric entities, as well as their in-
version, it becomes possible to speak about the ratio of different entities. This is
where the expressive power of geometric algebra takes effect, as it gives us a conve-
nient way to continuously differentiate between two positions or velocities, and pro-
vides a basis for change. The ratio of vectors a and b is called an even versor or a rotor
or spinor and can also be expressed as the exponentials of some bivector B . Thus ro-
tors are exponentials of bivectors, and can be written R = eB where e is the canonical
exponential (not a basis blade) and B is a bivector. Typically, the exponential form
expands using simple trigonometric functions (see Table 11). The rotors are sand-
wiched around other elements to transform them: v

′ =RvR−1 (sometimes written
v

′ =RvR̃ with the tilde representing reversion).
We can also compose versors with an odd number of blades (for instance, just

one), but such entities do not result in continuously differential (iterative) results.
Reflections and inversions are examples of transformations generated by odd ver-
sors. Rotations and transversions are examples of a transformation generated by
even versors. This terminology of ’even’ and ’odd’ comes from Lie algebras. There,
one speaks of the generators of the algebra, which themselves form a Lie group.
These groups of generators are classified, as we have been considering, by what
kinds of transformations they create in the algebra. For instance, the “pin” group
generates reflections and the “spin” group generates rotations. These groups are
also classified in terms of what properties they leave invariant after a transforma-
tion (e.g. orthogonal groups preserve the inner product). There is a mathematical
theory – the Lie-Cartan theory – which states that these groups completely define
the transformations they describe. Certain Lie groups are isomorphic to geometric
algebra, most notably SO(3) (orthogonal rotations) and SE (3) (Euclidean screws).
Thus it is in our model that bivectors are the group that completely define the trans-
formations they describe. This is a very powerful concept, as it enables us to linearly
combine members of these groups for interesting interpolations.

Lie groups are related to Lie algebras through an exponential mapping. Similarly,
our algebraic transformations are expressed as exponentials of bivector groups. More
specifically, rotors (spinors) are exponentials of bivectors, and can be written as
R = eB where e is the canonical exponential (not a basis blade) and B is a bivec-
tor.

All continuous transformations – those that are differentiable (e.g. rotations but
not reflections) – are generated, in geometric algebra, by bivectors. There is another
theorem – the Cartan-Dieudonné theorem – which specifies that the group of gener-
ators for orthogonal transformations can be composed of reflections in well-chosen
planes. Since bivectors represent planes, it makes sense that they should be the ba-
sis for all our transformational requirements. As we will see, not all planes in the
conformal model R4,1 behave the same way.

4.2 Well-Chosen Planes

Now we consider the new types of bivectors that are possible in our 5D model, since
these are the elements we will exponentialize to generate versors that transform our
elements.

20

The 5D conformal model includes the bivectors of Euclidean 3D space. In Fig-
ure 2.2 we show that these Euclidean bivectors represent planes. From Table 6 we
know that Euclidean bivectors create a negative term when multiplied together. This
negative term tells us that the transformations they enable are spacelike.

But in the 5D conformal model there are also other types of bivectors and hence
other types of planes. For instance, there is the Minkowski plane o ∧∞, which
squares to a positive term, as well as planes formed between the Euclidean and Null
basis, v∧o and v∧∞, which square to 0. These other kinds of planes enable different
kinds of transformations – namely timelike and lightlike depending upon whether
they square to a positive term, or to zero, respectively.

Because of the generality in speaking about spacelike, timelike, and lightlike planes,
and the fact that these are two-dimensional planes within a higher dimension, we
call all of these planes hyperplanes. Since they are a vector space they can be added
together continuously. Also, composites planes are possible – for instance a∧b+v∧
∞, which is a combination of a rotation plane and translation plane, which creates
an interpolatable dual line twist axis.

4.3 Reflections:

Figure 4.1: v
′ = −nvn−1 defines

the reflection of v about the plane
with normal versor n. Since n is
a unit length 1-blade, n = n−1 and
the equation for reflection can be
simplifed to v

′ = −nvn. The neg-
ative sign depends on the dimen-
sion of the transformed element:
a more general expression is X

′ =
nX̂ n−1.

Reflections are the base upon which all other transformations operate: all trans-
formations can be considered a combination of reflections. In the conformal model
it becomes possible to reflect in a circle or a sphere.

4.4 Rotations:

Euclidean Spin Rotors are generated by a spacelike Bivector B = e12 + e13 + e23 with
B 2 < 0 and weighted bases (i.e. αe1, βe2, γe3). The exponential expression R = eB

with B = Iθ
2 admits a familiar expansion: eB = cos θ

2 − si n θ
2 I .

4.5 Translations:

Translator rotors are generated by a lightlike Direction Vector d = e1∞+e2∞+e3∞
with d 2 = 0 and weighted bases. They can be considered a double reflection in par-
allel planes, and can be algorithmically generated as the ratio of two flat points (see

21

Figure 4.2: v
′′ = abvb−1a−1 defines the reflection of v about two planes with nor-

mal versors a and b (a reflection by b followed by a reflection by a). Since a and b
are a unit length 1-blades, a = a−1 and b = b−1. The equation for reflection is thus
simplifed to v

′′ = abvba or v
′′ = RvR̃ where ab defines the rotor R, also known as a

quaternion or spinor, and R̃ defines the reverse ba. If R is composed of unit versors
a and b, then its reverse, R̃, is the same as its inverse R−1. In general you will see this
"sandwich" transformation written both ways, as RvR̃ and/or RvR−1.

Section 5.3.2). We can easily create them according to the algorithm in Table 11. The
lightlike exponential

4.6 Dilations:

Dilation rotors about the origin are generated by the timelike Minkowski Plane E =
o ∧∞ with E 2 > 0 and weighted base. A dilatation around any point in space can be
constructed by translating the Dilator D.

4.7 Twists:

Figure 4.3: A general rotation
about the line l with direction a
and moment d . a ·d = 0.

Motors are generated by a spacelike Dual Line l = e12+e13+e23+e1∞+e2∞+e3∞
(a combination of rotation B = e12 + e13 + e12 and translation d = e1∞+ e2∞+ e3∞

22

Figure 4.4: A screw rotation about
the line l with direction a and mo-
ment d . a ·d = θ which defines the
pitch of the screw along the axis.

bivectors) with l 2 < 0 and weighted bases. The six-element bivector generators are
isomorphic to the lie group SE(3) and to Plücker Coordinates. By exponentiating
these elements of the form eB+d we generate an eight-term Motor M = s+e12+e13+
e23+e1∞+e2∞+e3∞+e123∞. Clifford termed his motors biquaternions which today
are sometimes referred to as dual quaternions. These concepts amount to the same
thing: general rigid body movements. Chasles theorem provides the foundation for
this: any movement in space can be analyzed as a rotation around and translation
along some axis in space. This is commonly referred to as screw theory and is critical
in robot locomotion design.

The dual line generator l consists of a euclidean bivector part B and a direction
vector d . The bivector determines the axis of rotation, and the direction vector its
moment from the origin. The angle between B∗ and d determines a pitch of a screw-
like motion, or twist. If B∗ and d are orthogonal, the dual line describes a general
rotation which is a rotation about an arbitrary line in space. Otherwise, if B∗ and d
are at some angle other than perpendicular, then the dual line l represents an axis
of rotation and translation. In the case that B∗and d are parallel – that is, identical –
the dual line goes through the origin.

Every position and orientation in Euclidean space can be uniquely described by
a corresponding twist from the origin. Leo Dorst has demonstrated the ability to
combine dual lines in a similar way that one might combine vectors: that is, we
can interpolate between them using cubic and quadric bezier techniques[25]. This
suggests an immensely powerful and underused approach to designing trajectories
– e.g. for navigating immersive environments. In addition, we now have a simple six
term description of the twist velocity of an entity. Versor includes a class Frame that
incorporates these principles. The algorithm for creating the exponential of a dual
line, and conversely, of finding the logarithm for a motor, are described by Dorst,
Mann, and Fontijne in [6], and by Wareham, Cameron and Lasenby in [26].

Sommer, Rosenhahn, and Perwass demonstrated that the twist representation of
position and orientation allows for discretizable shape descriptors, and thus “uni-

23

(a) (b) (c)

Figure 4.5: Twist Constructions in Versor through exponentiation of the dual line
axis. (a) General Rotation with orthogonal translation and rotation components:
a ·d = 0. (b) Screw rotation with parallel translation and rotation components a ·d =
1. (c) extrapolated Screw Rotation.

(a) (b) (c)

Figure 4.6: (a) Linear (b) Quadric and (c) Cubic interpolations of motor-generating
twists.

fies geometry, kinematics, and signal theory”[19]. As has been a central theme in
our discussion, Sommer et al. point out that Conformal Geometric Algebra allows
for entities and actions to coexist in one framework. Rosenhahn’s dissertation, “Pose
Estimation Revisited” investigates fourier analysis of twists in order to improve com-
puter vision recognition of arbitrary forms[12].

4.8 Boosts:

Boosts are generated by a lightlike Tangent T = oe1 + oe2 + oe3 with T 2 = 0 and
weighted bases. Boosts, also known as constant accelerations, transversors, or spe-
cial conformal transformations, can play a role in calculating relativity dynamics, as
a differential that moves along various orbits. Here we observe how they can be used
to bend lines into circles, and planes into spheres. Consider the transformations in

24

figure 4.7.

(a) (b) (c) (d)

Figure 4.7: σ
′ = BσB̃ with σ representing a unit circle (a) at the origin on the e12

(xy) plane and B = eλo∧e1 a boost in the e1 direction. Arrows on the circles show
the orientation of the circle. The circle transforms into a line when λ= 1. When λ is
greater than 1, the unit circle has turned inside-out and reverses orientation.

From these an important discovery can be made: the λ in the equation is a con-
venient representation of the curvature tensor of the equation. When λ= 0 the a unit
circle remains unchanged. As λ increases to 1, the unit circle becomes a line. This
works in the negative direction as well: as λ decreases to −1, We will see below that
such compact canonical representation of the bend is a powerful concept in warp
computations over a field.

The above depictions follow common textbook depictions of möbius transfor-
mations. We see the final shape outlined by the transformations envelope to be that
of a cardioid.

Figure 4.8: Cardioid Envelope of the Special Conformal Transformation operating
on a Circle

However, we are no longer limited to the 2D plane. In the above examples, we
are using the tangent generator lies in the same plane as the circle it is operating
on. What happens if we choose a different tangent or rotate the circle to a different
plane? Figure 4.9 below shows the results.

25

Figure 4.9: σ
′ = BσB̃ with

σ representing a unit circle
(a) at the origin on the e23
(yz) plane and B = eλo∧e1 a
boost in the e1 direction.

Another basic form easily created by the transversions are loxodromes, which
combine the boost tangent with a translation tangent.

Figure 4.10: Various loxodromic transfor-
mations of the form eλo∧a+γb∧∞.

In the exponent, we can also combine a Euclidean bivector for rotaions such that

our versor becomes eλoa+ θ
2 B , or we can add the Minkowski plane E for dilations. If

we combine all these together into one bivector, the resulting exponent is a point
pair: τ = B +o ∧a + t∞+E . Also known as a 0-sphere (a sphere on a line), a point
pair is what we get by wedging together to conformally mapped points: p ∧ q. As
of this writing, there is no algorithm published for calculating a closed form expo-
nential ep∧q of a point pair (iterative expansion techniques do exist however) – nor,
conversely, is there a logarithm for finding the point pair of such a versor, nor does
such a versor have a name. Though nameless, we can tell that the versor created by
this exponential must be the ratio of two point pairs which in our program is called
a Mot_Trv since it is the same as multiplying a motor by a transversor. These com-
pounded transformations contain 16 terms: p∧q

r∧s = α+ e12 + e13 + e23 +oe1 +oe2 +
oe3 +e1∞+e2∞+e3∞+e12E +e13E +e23E +oe123 +e123∞

Even without a logarithm, we can still use this powerful bivector to construct
continuous transformations by assuming we can combine them affinely as can with
all the other bivectors. Explorations of such combinations can be seen in Section
5.2.2.

4.8.1 Warped spaces and Curved Trajectories

Conic forms such as ellipses, parabolas, and hyperbolas are not directly represented
as subspaces of the algebra24, but movements along those paths can be easily gen-
erated. Here we introduce a method for moving along these curves by specifying a
point in space and a tangent vector. If we draw a line connecting the center points

24Wareham, Cameron, and Lasenby describe one method in [26], in which a function is fed a vector and
an eccentricity. Spinning the vector around carves out various conic shapes.

26

of the circles of our transformations we can create partial trajectories along ellipti-
cal or hyperbolic orbits. Given a round element p with a radius δ and a separate
tangent vector ot we can determine a specific position along a hyperbolic or ellipti-
cal curve by boosting p with the transversor rotor eot . The eccentricity of the curve
itself is determined by the relative position and the direction of the tangent vector,
and the radius of the original round element. The length of the tangent vector deter-
mines the position along that orbit from the particle’s current position. The sign of
the length indicates the direction of the transformation. Figure 4.11 shows various
trajectories carved with a circle and a tangent vector.

Figure 4.11: As we move a tangent generator (in red) to the right of the circle it op-
erates on, the trajectory of the transformation changes from hyperbolic to elliptic.
The switch occurs as the tangent exits the circumference of the circle.

We can generate exotic forms using an interpolated field of tangent vectors to
generate boosts: Figure 4.12 depicts the generation of a warp field through inter-
polation of tangent vector generators. Allowing these interpolated boosts to operate
on points of a mesh creates interesting dynamic mutations. By treating the field
of tangents as direction vectors an incompressible fluid, the warp fields observe the
confines of a semi-Lagrangian Navier-Stokes solver as presented by J. Stam in [28].
This novel “Hyper Fluid” allows the generation of bounded dynamic deformations,
including extrusions/extroversions/invaginations/intussusceptions25.

Figure 4.12: Using eight corner tangent vectors to parameterize the hyperbolic
warping of a 3D mesh.

It is clear that the rotor form of transformations is quite powerful. 26

25Such shape-shifting is a common characteristic of biological ontogenetic processes.
26For instance, a good paper [24] by D. Hestenes and J.Holt clearly translates the international crystal-

lography codes into CGA language using the language of rotors. C. Perwass, the creator of CluViz and
CluCalc, has modelled all of the space groups in collaboration with E. Hitzer.

27

5 Elements

We have described, in Section 3, the quadratic mapping x !→ o + x + 1
2 x2∞ of a Eu-

clidean vector x to a conformal null-vector representing a homogenous point p.
Since we are now dealing in a higher dimension, there are many more (25 = 32) basis
blades with which to work, and the various bivectors, trivectors, and quadvectors
that emerge naturally represent basic geometric entities to use in our calculations.
We build them up the same way we built up bivector planes in Euclidean space: us-
ing the wedge product. Table 11 lists some of the most commonly used entities. Ap-
pendix A lists all the basic ways of generating each geometrically significant element
in our model: the strict type finite state machine approach used in the implementa-
tion of Versor enables the easy generation of these useful tables. In this section we
look at various representations of these elements – both dual and direct – and a few
of the many ways of constructing them.

5.1 The Meet

Before examining the list of elements in Table 11 it will help to briefly detail the meet
operation, since the algorithms that define many of the geometric entities are often
better understood as intersections of other entities. The dual meet of two entities is
constructed by the wedge of the two entities’ duals. For instance, in 3D Euclidean
space, two bivectors AandB are dually defined by their normal vectors A∗and B∗.
The wedge of these two normal vectors A∗∧B∗ returns another bivector C . The dual
of C is again a vector C∗ which defines the axis of intersection of the original planes
A and B .

Figure 5.1: Meet of two Blades A and B determined by dualizing their dual wedge:
(A∗ ∧B∗)∗

We see by this operation that the meet is relative to the extension, which is a sort
of a join.

28

5.2 Round Elements

5.2.1 Points and Spheres

Normalized homogeneous points, or null-vectors, in the conformal model typically
have a weight of 1. They can also be considered as dual spheres with zero radius. By
adding to or subtracting from the weight of the ∞ basis, we can create imaginary or
real dual spheres of the from σ = p ±δ∞ where p is the homogenous center point
and δ is the radius of the sphere: by adding δ we create imaginary spheres with a
negative squared radius. Finding this squared radius is as simple as squaring the
dual sphere: σ2 = r 2. What exactly an imaginary sphere is varies from application to
application.27

Figure 5.2: Affine combination of
two normalized points creates a se-
ries of imaginary spheres, the en-
velope of which resembles an egg.

Null vectors, or points, in the conformal model have the unique property of hav-
ing a zero dot product with themselves: p ·p = 0. This interesting result is part of a
more general useful trait: the dot product between any two normalized points rep-
resents the squared Euclidean distance between them: p ·q = δ2.

The dual of a point is a direct sphere: any four points directly define a unique
sphere Σ= p ∧q ∧ r ∧ s.

5.2.2 Point Pairs and Circles

Wedging two points together forms the ten term bivector τ = p ∧ q . If we consider
each point in the pair as a dual sphere, then the operation p ∧ q defines the dual
meet of two spheres. If the two unique dual spheres have no radius – that is, if they
are in fact points, then their meet is imaginary.

27For example: multilayer perceptrons are a tool for statistical analysis of arbitrary sets of data. In [15]
Banarer et al examine the imaginary radius of rounds as a confidence measure in determining groupings.
While neural nets are beyond the scope of the present paper, it is interesting to point out this particular
“role” of the imaginary radius as a measure of certainty since it crops up in experiments. Specifically,
it comes into play when determining the meet of a line and a circle: if a line intersects a circle at its
perimeter we will find a point. If the line goes through the middle of the circle, we find an inflated point –
that is, a point with an extra bit of ∞ in it. As the line moves towards the middle of the circle, the ∞ basis
is weighted more heavily until it maxes out when the line goes right through the middle of the circle.

29

Figure 5.3: Two intersecting dual spheres meet at a circle. As they separate, the circle
where they meet shrinks until it becomes a point, and then, when the spheres no
longer intersect, becomes imaginary, with a negative squared radius.

Figure 5.4: Two dual spheres, in red, with a
radius close to zero, have an imaginary meet
(dotted black circle) and a real "plunge" in
blue. The plunge is the surround of the meet,
and is orthogonal to both the red spheres
that generate it. The term was introduced by
Dorst et al in Geometric Algebra for Computer
Graphics.

Since point pairs are bivectors, let’s assume they can be affinely combined: Using
simple linear interpolation techniques, we add two weighted point pairs together.
The dual of a point pair is the circle defined by their meet, so we draw this dual
representation of our interpolated pairs.

We have seen circles, both imaginary and real, as the dual of point pairs (aka
the dual meet of dual spheres). Any three points directly define a unique circle k =
p ∧q ∧r , though they are sometimes more easily found by intersecting two spheres.

5.2.3 Tangents

Part of the reason rounds can be so elegantly combined is that they contain tan-
gent elements. Pure tangents have zero size but a finite weight. They are created
by wedging any Euclidean element (vector, bivector, or trivector) with the origin o.
We explore uses of tangent vectors as generators at the origin of the form ot in Sec-
tion 4. Translation of such elements returns an element very similar to a Point Pair.
Future work will require more rigorous examination of tangent bivectors, which are
closely related to circles, to generate implicit surfaces, and pure tangent trivectors
as zero-sized spheres to generate implicit volumes.

5.3 Flat Elements

5.3.1 Directions

Just as tangents support round elements, so do directions support flat elements. Di-
rections are made by wedging any Euclidean element (vector, bivector, or trivector)

30

Figure 5.5: Dual representation (as imaginary cir-
cles) of affine interpolation of point pairs: (1−λ)p ∧
q +λ(r ∧ s).

with ∞. Directions are invariant under translations (they do not change if moved),
but they can of course be rotated.

5.3.2 Flat Points

Flat points are null vectors wedged with Infinity: p ∧∞. As Dorst et al explain, they
are the result of an intersection between a line and a plane, and they are useful for
describing potential elements within the algebra. For instance, given a dual line λ
and a flat point q not on the line, their union λ∧q defines a dual plane π through q
orthogonal to λ. Similarly, the contraction of a flat point from a direct line q'Λ de-
fines a direct plane Π. Another example: given a dual circle (a point pair) τ and a flat
point q , their union τ∧q defines a dual plane that goes through the axis of the circle
τ and the point q. We can also construct such a relationship with the contraction
product – given a direct circle κ, the contraction with a point q'κ returns a direct
plane that goes through the circle κ and the point q.

Figure 5.6: A Circle (in blue) and Line (in green) are contracted with a Flat Point (the
small red sphere) to create a red plane orthogonal to the circle and a yellow plane
orthogonal to the line.

5.3.3 Lines and Dual Lines

Lines are directly generated by wedging a point pair with ∞, or wedging a point
with a direction vector. We have examined dual lines closely in our discussion of
the Motor algebra they generate. There are many ways of finding a dual line; for
instance, the central axis l of a circle σcan be found by contraction with infinity:
∞'σ= l .

31

5.3.4 Planes and Dual Planes

Dual Planes π = n + δ∞ are combination of a Euclidean normal vector n plus a
weighted infinity ∞ representing the distance from Origin (sometimes called the
Hessian distance). Notice the Origin basis o is absent here28 Given two null points
p and q , we can construct the dual plane in between them by simple substraction:
π = p − q : subtracting one normalized point from another eliminates the o blade
and returns a vector of the form π= n+δ∞ which represents a dual plane with nor-
mal n at distance δ from the origin.

5.4 Infinities

The infinity basis blade ∞ remains invariant under the transformations detailed in
section 4. By replacing ∞ with e− or e+ in the above formulas, we can construct a
model of spherical or hyperbolic spaces respectively.

Figure 5.7: The same set of
Euclidean lines (in blue) di-
rectly defined as p∧v ∧∞ are
defined in spherical space as
p ∧ v ∧ e− (left figure) and in
hyperbolic space as p ∧v ∧e+
(right figure).

Many of these constructions and more can be found in the rich literature on 2D
inversive geometry29 but there is clearly much investigative work that has yet to be
done within this recent 3D extrapolation. A direct plane of the form p ∧ q ∧ r ∧∞
can also be converted into spherical or hyperbolic space by substituting in e− or e+
for ∞.

5.5 An Example from Robotics

A good example of the use of many of the above elements exists in the field of robotics,
where inverse kinematics strives to define relevant planes and axes of rotation, cir-
cles of interest, etc. In a dissertation chapter entitled “Rapid prototyping of robotics
algorithms” [27] Dietmar Hildenbrand outlines some of the GA methods used by in-
vestigators at CINVESTAV led by Eduardo Bayro-Corrochano. Figure 5.8 recreates
the steps required to determine the joint positions in a kinematic chain given a de-
sired target.

Such a k-chain is representable as a series of joint motors specifying the motion
at each joint and link motors specifying the relative transformation between joints.
In the Versor implementation, this information is stored as a Frame. Sections 6.5.4
and 6.5.3 include a description of classes Frame and Chain.

28In purely affine models, the o element represents the distance, and the ∞ element is absent. See
footnote 32 below.

29See, for instance, Yaglom’s Complex Numbers or Needham’s Visual Complex Analysis.

32

(a)

(b)

(c) (d)

(e)

(f)

Figure 5.8: A method for calculating the position of an unknown joint in a kinematic
chain of joints 0 to 3 entails finding the intersections of spheres and calculating or-
thogonal planes of interest. (a) The target point defines a circle of interest. (b) The
plane through the target point and the robot base intersects with the circle of inter-
est, defining a point pair. The last link on the robot chain, joint 3, is placed at one
of these points. (c) Two spheres centered on joints 1 and 3 meet at a circle. This
circle defines the set of possible positions for the unknown joint 2. (d) Intersecting
the circle with the plane from (b) defines a point pair. The unknown link is set to
one of these positions. (e) Orientation of the frames is determined by the dual lines
that link them. (f) A different position. For more details the reader is directed to the
references [27].

33

6 Implementation

This section outlines a C++ implementation strategy based on the work of Daniel
Fontijne, introduces a unique solution for generating a dynamic library using the
Lua programming language, and describes the design of a Finite State Machine for
navigating the algebraic operations by treating multivectors as node states and op-
erations as edges for traversing the graph. The construction of a GA-based Frame
class and a Field class is discussed. 30

6.1 Existing Software

A handful of good stand-alone software packages for visualizing and manipulat-
ing CGA currently exist and are familiar to the GA community, specifically CluCalc
(and CluViz), Cinderella, and GAViewer. In addition, plugins exist for Matlab, Maple,
Mathematica and CGal, and a fast low-level library libcga for C++. There is also an
impressive implementation generator called Gaigen that can write optimized code
in various languages and an optimizer called Gaalop that can optimize scripts writ-
ten for CluCalc. Most of these interesting systems are designed as either high-level
instructive tools for learning the algebraic logic (typically written in an interpreted
language like Java), or conversely as exercises in optimized implementation strate-
gies from a low-level computer science perspective (with little if any built-in physics
or application framework). These tools contribute to learning and using the algebra
while leaving plenty of room for the creation of more tools: systems that deliver al-
ready optimized code within a high-level interface; systems that embed GA within
a navigable multimedia environment; systems that incorporate audio to allow for a
digital signal processing approach to form synthesis.

6.1.1 Features of Versor:

• Immersive Navigation. A class Frame simplifies rotations, translations, and
twisting –and differentials of each for physics simulations. A subclass Camera
inherits from Frame greatly faciliating elegant navigation within immersive
environments.

• Generator Fields. A templated class Field can create a warp field or twist field.
This is an extrapolation of classic graphics simulations. Typical 3D direction
vector fields for integrating the movment of liquids and fabrics, for instance,
can be adapted into Multivector Fields for twisting and boosting these envi-
ronments instead, creating hyper fluids.

30Not detailed here are the libraries with which Versor interfaces: the excellent work of my colleagues
at the Media Arts and Technology Program in UCSB, who have built lightweight libraries for creating
GUIs, adding multimedia device controllers, and interacting with audio sample data. For more in-
formation about those, please see the GLV library for graphic user interfaces by L. Putnam, G. Wake-
field, and E. Newman: http://mat.ucsb.edu/glv/, the Gamma library for signal processing by Put-
nam: http://mat.ucsb.edu/gamma/, and the OSC messaging manager DeviceServer by C. Roberts:
http://www.allosphere.ucsb.edu/DeviceServer/.

34

So
ft

w
ar

e
In

te
ra

ct
iv

e
A

n
im

at
ed

A
n

n
ot

at
ed

A
u

di
o

Sc
ri

pt
in

g
In

te
gr

at
io

n
O

pt
im

iz
at

io
n

In
te

n
de

d
U

se
U

n
iq

u
e

Fe
at

u
re

C
lu

V
iz

ye
s

25
fp

s
ye

s
(L

at
ex

)
–

C
lu

Sc
ri

p
t

Li
br

ar
y

or
St

an
d

A
lo

n
e

Se
e

G
aa

lo
p

V
is

u
al

iz
at

io
n

A
n

n
ot

at
io

n

G
AV

ie
w

er
ye

s
–

ye
s

–
St

an
d

A
lo

n
e

–
V

is
u

al
iz

at
io

n
Ed

u
ca

ti
on

al

C
in

de
re

lla
ye

s
ye

s
ye

s
–

C
in

dy
Sc

ri
p

t
St

an
d

A
lo

n
e

Ja
x

(f
or

Ja
va

)
Ed

u
ca

ti
on

Ph
ys

ic
s

G
ab

le
–

–
ye

s
–

M
at

la
b

Pl
u

gi
n

–
Pl

ot
ti

n
g

G
aa

lo
p

–
–

–
–

C
lu

Sc
ri

p
t

O
p

ti
m

iz
er

fo
r

C
lu

Sc
ri

p
ts

G
PU

O
p

ti
m

iz
at

io
n

Sp
ee

d

G
ai

ge
n

2.
5

–
–

–
–

C
++

Li
br

ar
y

G
en

er
at

or
Lo

op
U

n
ro

lli
n

g
Im

p
le

m
en

ta
ti

on
G

en
er

al
it

y

M
V

1.
3.

0
–

–
–

–
C

++
Li

br
ar

y
Sp

ar
se

M
at

ri
ce

s
Im

p
le

m
en

ta
ti

on
H

ig
h

N
-D

im

Ve
rs

or
ye

s
ye

s
–

G
am

m
a

C
++

Li
br

ar
y

or
St

an
d

A
lo

n
e

Lo
op

U
n

ro
lli

n
g

Im
m

er
si

ve
E

n
vi

ro
n

m
en

ts
In

te
gr

at
io

n

Ta
bl

e
12

:C
om

p
ar

is
on

of
G

eo
m

et
ri

c
A

lg
eb

ra
so

ft
w

ar
e.

35

• Multimodal Interactivity. Versor takes advantage of the excellent work done
by my colleagues in media infrastructure design, using the gui library GLV and
the control library Device Server to enable interaction with real-time environ-
ments. Geometric Algebra can thereby be created and manipulated intuitively
through a variety of interfaces, and can be wrapped into larger scale projects.

• Audio Integration. Links to Gamma – a cross-platform audio signal processing
library (see footnote 30) – enabling experimentation between audio synthesis
techniques and 3D form synthesis techniques, as well as hypercomplex signal
processing.

6.2 Challenges

The geometric algebraic system poses one main difficult problem for the program-
mer. To build an efficient implementation one must create various specialized mul-
tivector types, which paradoxically preempts the ability to use the generalized na-
ture of the algebra. 31 Loosely following a strategy outlined by Daniel Fontijne, the
engineer of Gaigen (Geometric Algebra Implementation GENerator), the backbone
source code for Versor is precomputed by scripts written in Lua, allowing for differ-
ent specialized functions to be called when calculating the various products of each
multivector type. Unlike Gaigen however, Versor’s implementation is locked into
the 5D conformal model (Gaigen allows users to create any metric in any dimen-
sion) and is strictly a C++ program (Gaigen allows for implementations in multiple
languages). These two limitations grant Versor the advantage of running efficiently
“off the shelf” – it does not require the user to execute a Gaigen-like optimization
analysis of his/her own program as part of the design process. Because functions
are stored in a dynamic library multiple application(s) can use the Versor library at
once, each only loading the particular functions it needs into memory.

6.2.1 Goals

A major goal in the design process of this library and software interface was to achieve
the following:

• Maintainance of the total general expressivity of the algebra within the con-
formal model and its homogenous and Euclidean subspaces.

• Optimization by specialization of geometric, exterior, and inner products for
each geometrically significant type.

• Implementation of a garden of useful algorithms, including known logarithms
for interpolating between general transformations (e.g. twists).

• Ease of compilation and user application design.

31In [1] Hildenbrand, Fontijne, Perwass, and Dorst list four difficulties in developing a working GA sys-
tem: the need for specialized types, the number of basic operations that must be coded, the arbitrary
metric, and the exponential increase in combinatoric complexity with each increasing dimension.

36

In exchange for an optimized self-contained solution, there are limitations:

• Currently only the 5D conformal model is implemented. While this includes
efficient implementations of 3D and 4D spaces, it does not allow higher di-
mensions or alternative metrics. A more flexible approach would allow the
implementation of a 6D implementation of Penrose’s twistor program, as de-
scribed in the literature, and other metric spaces which are sure to crop up.

• To ensure the dynamic library component of the software is complete, many
functions are included that may likely never be used by any specific applica-
tion. As a result, relative lightness of the distribution itself is compromised,
since it is currently 50mb. Note that, since the library is dynamic, only those
functions used are loaded into RAM.

• Since the library is dynamically loaded as function pointers, there is some
overhead introduced that could be eliminated with inlined functions.

To solve some of these limitations, a future implementation strategy is proposed
in section 6.6, using JIT (just-in-time) compilation methods for making the library
optimizable, lightweight and capable of handling any metric and any dimension (up
to processing power).

6.2.2 Strategy

Even with its current limitations, detailing the method used for this iteration of the
project may help others as they learn the algebra, investigate their own implementa-
tions, and seek new and innovative formmaking strategies. The process of creating
Versor can be broken down into the following steps, detailed below.

1. Build an inefficient Object-Oriented 3D Euclidean Model. This is adapted
from the basis-blade implementation explained in the appendix of Geomet-
ric Algebra for Computer Science. Basis blades are represented by bitflags as
described in Table 3. The geometric, outer, and inner products are calculated
with the xor operation between basis blades. Multivectors are arrays of basis
blades, and are operate on each other as nested for-loops of basis blade-to-
basis blade comparisons.

2. Conformalize. Introduce two new bases, one which squares to 1 and another
which squares to -1. Create a protocol for mapping between non-degenerate
and degenerate metrics as described in equations 3.1 and 3.2.

3. Bake Results. The Object Oriented reference model of steps 1 and 2 are used
to generate a Lua Tables Model version. In this model we define each basis
blade as a table which can index into each other, and each specialized type as
a list of these tables. This gives us a succinct method for looking up results of
arbitrary operations. We use these tables to create optimized C code in step
4, as well as to examine properties of the algebra – for instance to create the
operation tables in the appendix.

37

4. Generate Library. The Cosmo templating library of Lua is used to write effi-
cient C functions with unrolled loops. Heuristics guide the decisions of which
operations should be computed.

6.3 Creating The Object Oriented C++ General Reference Model

6.3.1 Euclidean Geometric Algebra

The Basis Class We first build a bit-representation of basis blades. To make things
easier, we use the bitset<> class from the C++ standard template library. This class
allows for easy summation of the number of “on” bits (which tells us the grade of
the blade). For a 3D Euclidean model we define a class Basis which has an mBlade
member of type bitset<3> and a mWeight member of type double.

The class must include methods for involution, reversion, and conjugation as
defined in equations 4.1 through 4.3. We also define three operators, *, <=, and ^
to represent the geometric, inner, and outer products between basis blades, respec-
tively. All products are functions of two basis blades which output an xor compari-
son of the operands. The inner and outer products are treated as special cases of the
geometric product, and return an empty Basis if certain conditions are not met.

Algorithm 1 Geometric Product of Basis Blades

function PRODUCT(A, B)
r ← A.bl ade ⊕B.bl ade & ⊕: bitwise XOR
w ← A.wei g ht ∗B.wei g ht
s ← or der (A.bl ade,B.bl ade) & Check for sign flip
return B asi s(r, w ∗ s)

The order function in the the above algorithm is critical for anticommutivity:
it checks the relative positions of the bits and determines whether the result needs
to be multiplied by -1.

Algorithm 2 Determine the order of blades and return 1 or -1

function ORDER(a, b)
repeat

a >>= 1 & bitshift right
c ← a&b & bitwise AND
n ← n + c.count () & accumulate result

until a = 0
if n&1 then

return −1
else

return 1

Calculating the inner product starts by calculating the geometric product, with
two conditionals. Here we are only interested in the Hestenes left contraction prod-

38

uct, which ensures the left operand is of a lower grade than the right operand, and
also discards results that are not specifically of grade Bg r ade − Ag r ade . Alternatively
contraction products are easily made with different conditionals (to allow right hand
contractions for instance).

Algorithm 3 Inner (Left Contraction) Product of Two Basis Blades

function INNER(A,B)
r ← pr oduct (A,B)
if A.g r ade > B.g r ade or r.g r ade &= (B.g r ade − A.g r ade) then

return B asi s() & return an empty Basis
else

return r

The outer product simply checks for any common blades, and discards those
results.

Algorithm 4 Outer Product of Two Basis Blades

function OUTER(A,B)
if A.g r ade&B.g r ade &= 0 then & check for any shared bits

return B asi s() & return an empty basis
else

return pr oduct (A,B)

That covers the basics, though it will likely be useful to define a comparison op-
erator between basis elements to be used in the Multivector class described below.

The Multivector Class Multivectors are treated as arrays of Bases. Calculating the
geometric, inner, and outer products of multivectors A and B is a linear operation,
and therefore just a matter of iterating through each Basis member of A and calcu-
lating the product with each Basis member of B .

Algorithm 5 Geometric Product of Multivectors

function PRODUCT(A,B)
for i in A.bases do

for k in B.bases do
r ← pr oduct (i ,k)
c ← c + r & r is added to the list of basis blades contained in c

c.compr ess() & combine like terms
c.clean() & eliminate 0 terms return c

The compress() and clean() methods in the above pseudocode keep the re-
sulting Multivector as sparse as possible.

39

6.3.2 Conformal Geometric Algebra

Introducing a new signature to the underlying vector space is straight forward, though
creating a null basis complicates matters slightly. Continuing to follow the imple-
mentation guidelines established by Dorst, Mann, and Fontijne, we first need a new
function which determines whether the blades flip signs under the metric. This in-
formation is stored as an array filled with values of 1 or -1. Our R4,1 metric, for ex-
ample, is represented as an array of doubles:

double Signature::R41[5] = {1.,1.,1.,1.,-1.};
We define a new metric product function for our Basis class which checks for

annihilating bits – that is, those shared elements of two basis blades. Since the outer
product discards operations between basis with similar components, the following
algorithm need only be applied to the geometric and inner products.

Algorithm 6 Geometric Product of Basis Blades in R4,1

function METRICPRODUCT(A, B, R41)
r ← pr oduct (A,B) & normal product of algorithm
t ← A&B & bitwise AND comparison returns annihilating bits
i ← 0
while t &= 0 do

if t&1 &= 0 then
r ← r ∗R41[i] & Multiply annihilating blades by metric

t ← t >>= 1 & bitshift right
i ++

return r

Finally, we need a way to add in our null basis, defined by the relations in equa-
tions 3.1 and 3.2. We will be defining our multivectors in terms of these elements,
which define the degenerate (non-diagonalized) metric of Table 9. The strategy out-
lined in Algorithm 6 only applies to non-degenerate (diagonalized) metric tables,
so we will have to create methods for switching back and forth. It is easy to see why
this model can be inefficient to compute, yet we will eventually use the results of this
section to bake a more efficient model. Still, to avoid drastically increasing our com-
pute time in the reference implementation, we store our metric transformations in
a table. BUT it is important that in switching from our degenerate metric into a non-
degenerate one, we will be exchanging one basis element for two, and so our look-up
table needs to be a table of Multivectors, as opposed to a table of Basis blades.

To build our tables we define two functions: pushBasis and popBasis. Pushing
takes a blade from our null basis and returns a multivector from the diagonalized
metric. Popping takes a blade from the diagonalized metric and returns a multivec-
tor in the null basis.

In performing bitwise calculations, enumerations are shared between nonde-
generate and degenerate metric spaces. These are listed in Table 13.

40

Minkowski (nondegenerate) bits null (degenerate)

EPLANE 11000 ORIINF
EPLUS 01000 ORIGIN
EMINUS 10000 INFINITY

Table 13: Enumerated Bit Representations in the Conformal Model

Algorithm 7 Switching from a null basis to the standard diagonal R4,1

function PUSHBASIS(a)
Multivector mv
t ← a.bl ade & Get the bit representation of Basis a
w ← a.wei g ht & Get the weight of Basis a
if t&ORI I N F == 0 then & compare bits to E plane

return Mul t vector (a) & if no bits shared, return input

if t&ORI I N F ==ORI I N F then
return Mul ti vector (a) & blade contains E plane, return input

if t&ORIG I N &= 0 then
b ← t ⊕ORIG I N & remove o bit with xor operation
b1 ← b ⊕EPLU S & add in e+ bit
b2 ← b ⊕E M I NU S & add in e− bit
nb1 ← B asi s(b1, w ∗ .5) & multiply original weight by .5
nb2 ← B asi s(b2, w ∗ .5)
mv ← mv +nb1 & add the two new bases to the Multivector
mv ← mv +nb2
return mv

if t&I N F I N I T Y &= 0 then
b ← t ⊕ I N F I N I T Y & remove ∞ bit with xor operation
b1 ← b ⊕EPLU S & add in e+ bit
b2 ← b ⊕E M I NU S & add in e− bit
nb1 ← B asi s(b1, w ∗−1) & multiply original weight by −1
nb2 ← B asi s(b2, w) & multiply original weight by 1
mv ← mv +nb1 & add the two new bases to the Multivector
mv ← mv +nb2
return mv

The above algorithm 7 satisfies the defining relations of equation 3.1: o = .5(e++
e−) and∞= e−−e+. The next algorithm will satisfy the defining relations of equation
3.2: e+ = o − .5∞ and e− = o + .5∞

41

Algorithm 8 Switching from the standard diagonal R4,1 to the null basis

function POPBASIS(a)
Multivector mv
t ← a.bl ade & Get the bit representation of Basis a
w ← a.wei g ht & Get the weight of Basis a
if t&EPL AN E == 0 then & compare bits to E plane

return Mul t vector (a) & if no bits shared, return input

if t&EPL AN E == EPL AN E then
return Mul ti vector (a) & blade contains E plane, return input

if t&EPLU S &= 0 then
b ← t ⊕EPLU S & remove e+ bit with xor operation
b1 ← b ⊕ORIG I N & add in o bit
b2 ← b ⊕ I N F I N I T Y & add in ∞ bit
nb1 ← B asi s(b1, w)
nb2 ← B asi s(b2, w ∗−.5) & multiply original weight by −.5
mv ← mv +nb1 & add the two new bases to the Multivector
mv ← mv +nb2
return mv

if t&E M I NU S &= 0 then
b ← t ⊕E M I NU S & remove e− bit with xor operation
b1 ← b ⊕ORIG I N & add in o bit
b2 ← b ⊕ I N F I N I T Y & add in ∞ bit
nb1 ← B asi s(b1, w)
nb2 ← B asi s(b2, w ∗ .5) & multiply original weight by .5
mv ← mv +nb1 & add the two new bases to the Multivector
mv ← mv +nb2
return mv

6.4 Lua Code Generation

Lua tables can be used as mixed-dimensional multivectors to generate a strictly
typed and stripped-down “brute-force” C dynamic library for CGA. The library un-
rolls loops to precompute the combinatoric operations necessary for efficient CPU
computing and stores the resulting functions in a table. This “hard-wires” all of the
calculations built by the reference model.

At the core of the Lua language is the notion of a table of key-value pairs. These
tables behave like a combination of maps and classes in C++ code, with both the
class-like flexibility of containing mixed types and the map-like flexibility of having
key-value pairs added after initialization of the table. Additionally, Lua allows one
table to use another table as a key or a value. This greatly simplifies our task of
organizing the results of the C++ reference model. The table-as-object approach
used in Lua conveniently encapsulates some core GA concepts: since multivectors
are “objects” with “tabled” rules describing how they combine, Lua is a clean way to
program these two critical characteristics of the algebra.

42

Key Value

id string::name

w int::weight

g int::grade

gp {}

op {}

ip {}

Table 14: Initial Key-Value Pairs for Basis Blade Tables

6.4.1 Building Basis Tables

We use the inefficient iterative xorbit logic of our reference construction to generate
a combinatoric map of our elements. To start out, all basis blades are defined as
individual tables with:

• an id name (e.g. id="_e1")

• a weight of 1 (w=1)

• a grade variable (e.g.g=1)

• an empty geometric product table (gp=)

• an empty outer product table (op=)

• an empty inner product table (ip=)

In 5D Geometric Algebra, there are 25 – or 32 – different basis elements, and so we
make a table for each. On initialization, each basis table has empty geometric, outer,
and inner product tables. For each one of these empty tables, we will use the basis
tables themselves as the “keys” and the “values” will be a new table. Thus each xor
function from our reference model is converted into a key-value pair. The values
themselves will be one or more basis elements, with weights of 1, -1, or 0. Since all
basis blades are assigned a weight of 1, we also define a simple function blade(b,w)
which will return a copy of the same basis blade b but with a different weight w. The
original basis blade remains unchanged, with a weight of 1.

For example, our first basis table _e1 is created:

_e1 = { id = "_e1", w = 1, g = 1, gp = {}, ip = {}, op = {}}

and all other basis tables are similarily created, with “no” and “ni” standing for
“null origin” and “null infinity” after the custom introduced by Fontijne.

_e2 = { id = "_e2", w = 1, g = 1„ gp = {}, ip = {}, op = {}}
...

43

_ni = { id = "_ni", w = 1, g = 1, gp = {}, ip = {}, op = {}}
...
_e123noni = { id = "_e123noni", w = 1, g = 5, gp = {}, ip = {}, op = {}}

Next, we fill in the empty product tables for each basis element:

_e1.gp[_s] = { blade(_e1,1), }
_e1.op[_s] = { blade(_e1,1), }
_e1.ip[_s] = { blade(_s,0) }
_e1.gp[_e1] = { blade(_s,1), }
_e1.op[_e1] = { blade(_s,0) }
_e1.ip[_e1] = { blade(_s,1), }
_e1.gp[_e2] = { blade(_e12,1), }
_e1.op[_e2] = { blade(_e12,1), }
_e1.ip[_e2] = { blade(_s,0) }
...
_e1.gp[_e123noni] = { blade(_e23noni,1), }
_e1.op[_e123noni] = { blade(_s,0) }
_e1.ip[_e123noni] = { blade(_e23noni,1), }

This would take a long time to do by hand, so luckily we are generating these
tables from our reference implementation. It is useful to point out here that each
product “key” returns a table of tables because there are some products that return
more than one basis element – for example, the geomeric product between the ori-
gin o and infinity ∞ returns both a scalar (with a weight of -1) and a bivector (the
Minkowski plane E): o∞=−1+o ∧∞

_no.gp[_ni] = { blade(_s,-1), blade(_noni,1), }

Lastly, each basis table must return values for involution, reversion, and
conjugation keys which specify whether or not there is a sign flip. Since these op-
erations only change the sign of a blade, and don’t create new blades, we do not need
to worry about the possibility of multiple outputs. For instance, the _e12 basis blade:

_e12.involution = blade(_e12,1)
_e12.reversion = blade(_e12,-1)
_e12.conjugation = blade(_e12,-1)

6.4.2 Building Basic Types

With a table for each 32 basis elements, and geometric, outer, and inner products
operations for each, along with involution, reversion, and conjugation operations,
the next step is to build up basic types. Heuristically, we know what these should be.
As shorthand, we assign all our basic elements three letter nicknames. For instance,
our 3D Euclidean subspace vector is a Vec, and our 3D Euclidean subspace bivector
is a Biv. A list of names is in Table 11.

Vec = { id = "Vec", desc = "Euclidean Vector", bases = {_e1, _e2, _e3, } }
Biv = { id = "Biv", desc = "Bivector", bases = { _e12, _e13, _e23} }

44

Rot = { id = "Rot", desc = "Rotor", bases = { _s, _e12, _e13, _e23} }
Mot = { id = "Mot", desc = "Motor", bases = { _s, _e12, _e13, _e23, _e1ni, _e2ni,

_e3ni, _e123ni} }

We give our specialized types an id name, a description, a key, and a table of
bases (and each basis is itself a table). The desc key will come in useful when we
print out analyses of the algebra itself. When “choosing” which types to represent, it
is important to remember that there are many – more even than are listed in the au-
thoritative book on programming GA by Dorst, Mann, and Fontijne, on the subject.
For instance, we have not discussed Paravectors which are composed of vectors plus
scalars.32

The next step is a matter of taking products between these types. We do this the
same way we did it in the reference model – as a linear operation where we we cal-
culate the result of performing the operation on each basis element of the first type
with each basis element of the second type. We reduce terms by combining similar
blades, and eliminate the results of operations which return a blade with a weight
of 0. We compare this final, reduced term to our list of pre-built types. If it already
exists, we do nothing, if not, we create a new type with a name that reflects the op-
eration used to create it. For instance, the geometric product of a Rotor and Vector
is something we have not discussed, and yet it crops up frequently in calculations as
an “intermediate” or “temporary” term when performing transformations. We don’t
have a description for it, so it just uses its id name.

Rot_Vec = { id = "Rot_Vec", desc = "Rot_Vec", bases = {_e1, _e2, _e3, _e123, }
}

A transformation of the form Rv R̃ actually creates this strange “dual rotor” though
such a multivector is rarely mentioned in the literature. The transformed vector v

′

is simply assigned the first three bases; the last basis, the Euclidean pseudoscalar, is
dropped. Such intermediate multivectors – those without obvious geometrical rep-
resentation that still “crop up” during basic calculations – will be included in the
finite state machine. Determining which ones are necessary is a heuristic matter;
during the course of writing Versor it was sometimes necessary to go back to the
code generation and include an intermediate type to avoid errors or improve effi-
ciency.

6.4.3 Building a Finite State Machine

From the above tables of basic elements and “intermediate” multivectors we gener-
ate a total of 167 types33 The next step is one of iteration and C code generation: for

32Nor have we precisely articulated how the affine model fits within the conformal model. Briefly: we
can construct Affine points, lines, and planes without the ∞ component. Affine points contain: e1, e2,
e3, o. Affine lines contain: e12, e13,e23,e1o,e2o, e30. Affine planes contain: e12o,e13o, e23o,e123. See also
Bayro-Corrochano, Reyes-Lozano, and Zamora-Esquivel’s 2006 text, p.67.[4]

33This total includes affine representations of space, as well as a few paravectors, though I have not yet
explored such concepts explored in any significant way. See previous footnote.

45

each of the basic types, we calculate and unroll three operations (inner, outer, and
geometric) with each other type, for a total of 83,667 functions and 80mb worth of
information (56mb when compiled). Many of these functions will never be used by
a given program, so the resultant libconga is built as a dynamic library to which Ver-
sor links. Only those functions used by any given program are loaded into memory.
This solution is fast enough, thorough, and self-contained: once it is built, libconga
can handle practically any operation in our arsenal. In addition, it can easily be am-
mended with additional types as the need might arise, or fewer, and recompiled.
Its weaknesses are the redundancy and size of the dynamic library, and the over-
head created by treating all operations as function pointers instead of allowing the
compiler to inline them. An alternative solution could be to create program specific
libraries (Gaigen’s approach), or to JIT compile just the necessary functions at run-
time. For experimentation and fast prototyping, the finite state machine approach
works well.

Each function takes three pointers to doubles representing a left operand, a right
operand, and a return. All functions are indexed in an array of function pointers,
and an array of integers stores an index to this index, specifying a return type. Each
type has three arrays, one for each operation, which index into the function pointer
array. When Versor executes Vec a * Rot b, it looks at the geometric product array
in libconga for type Vec (a 3D Euclidean Vector) and returns an index of the function
for multiplying it by a Rot (a Rotor). This function is passed in the values of a and b
and an empty array to fill and return. Versor also looks up what type is returned.

The model described above defines a finite state machine that executes a func-
tion from a list of functions, stores the resultant data, and moves to the next list
of functions specific to that data type. Because of the precomputed types (Versor
“knows” for instance that contracting infinity out of a circle results in a dual line
which represents the axis through the circle), it can also be used to answer queries
like “given a circle and a point, what can I produce?”

6.5 Adding Functionality

The list of basic operations in Table 15 can be used to construct more complex func-
tions. Working on top of libconga, Versor implements many of the known algorithms
for calculating spatial relationships and transformations, from finding the tangent
to a sphere at a specific point to extracting logarithms of Motors. Table 16 below lists
some of the more common functions used in Versor.34 These functions are static and
blind to the input types: they take in one or more multivectors and spit out another.
Some internally force the return of specific type, but inputs and outputs are generic
States. The generic operations enable a data flow model for building abstract opera-
tion graphs with functionoids: each multivector State can be a drawable Observer
to the Graph of operations in which it finds itself.

34A complete documentation has been generated with Doxygen and is available online at
www.mat.ucsb.edu/versor/

46

Operation Operator Expression Notation

Geometric Product * A * B AB

Inner Product <= A <= B A'B

Outer Product ^ A ^ B A∧B

Commutator % A % B A×B

Inverse ! !A A−1

Reverse ~ ~A Ã

Conjugate conjugate() A.conjugate() Ā

Involute involute() A.involute() Â

Table 15: How to perform basic operations on multivectors in Versor

Function Output Notation

Op::sp Spin A by B BAB−1

Op::re Reflect A by B B ÂB−1

Op::rj Rejection of A from B (A∧B)B−1

Op::pj Projection of A onto B (A'B)B−1

Op::dl The Dual of A A∗

Op::ud The Undual of A A−∗

Op::dle The Euclidean Dual of A A'

Op::ude The Euclidean Undual of A A−'

Op::mat The 4x4 matrix of input Rotor R





x0 y0 z0 0
x1 y1 z1 0
x2 y2 z2 0
0 0 0 1





Op::aa The axis angle rep of input Rotor R
[
θ x y z

]

Table 16: Some useful functions operating on one or two arguments.

47

Function Output Notation

Gen::log_rot The Bivector Generator of input R log (R)

Gen::log_mot The Dual Line Generator of inputM log (M)

Gen::mot_dll The exponential M of input Dual Line B +d∞ eB+d∞

Gen::rot_biv The exponential R of input Bivector θI e−
θ
2 I

Gen:ratio_vec The Rotor R that takes input Vec a to input Vec b (1+ba)-
2(1+a·b)

Gen::ratio_dll The Motor M that takes input Dll A to input Dll B

Gen::trs The exponential T of input Direction Vector d∞ e−
d
2 ∞

Gen::dil The exponential D of input E plane λE e
λ
2 E

Gen::trv The exponential B of input tangent vector e
ot
2

Table 17: Common functions for dealing with versors and their generators.

Function Output

Ro::null Point p map of input Vector v

Ro::dls Dual Sphere from input Vector v and radius α

Ro::split1 Point p of input Point Pair p ∧q

Ro::split2 Point q of input Point Pair p ∧q

Ro::sur Dual Sphere Surrounding input

Ro::cen Center point p of input Round

Ro::car Carrier Plane or Line of Input Circle or Point Pair

Ro::siz Squared Radius (+ or -) of input Round

Ro::wt Weight α of input Round

Table 18: Common functions for creating and querying round elements

48

Function Output

Fl::car Carrier Plane or Line of Input Circle or Point Pair

Fl::loc Point p on input line or plane closest to input point

Fl::wt Weight α of input Flat

Fl::dir Direction of input Flat

Table 19: Common functions for creating and querying flat elements

Function Output

Ta::at Tangent to input State at input point p

Ta::wt Weight α of input Tangent

Table 20: Common functions for creating and querying tangent elements

Dorst, Mann, and Fontijne’s textbook includes a table of useful operations for ex-
tracting the position, orientation, and size of various elements of the algebra. Some
are trivial (the direction of a tangent are the same three coordinates) and not im-
plemented algorithmically. To calculate draw routines this information is translated
into OpenGL matrix calls, glTranslate*, glRotate*, and glScale*. For instance,
here is the draw() routine called by a Cir (circle) element myCircle.

//Center:
Pnt v = Ro::cen(myCircle);

//Orientation Relative to xy plane:
bool sign = Op::sn(b, Biv::xy);

//Unit Euclidean Bivector Plane of Circle:
Biv B = Biv(Ro::dir(myCircle)).unit();

//Rotor to B:
Rot r = Gen::ratio_vec(Vec::z, Op::dle(B));

//Axis angle of Rotor:
Vec4 t = Op::aa(r);

//Squared Radius:
double siz = Ro::siz(myCircle);

//Is it an imaginary Circle?
bool im = siz > 0 ? 1 : 0;

//Radius:
double rad = Ro::rad(myCircle);

//Transform OpenGL Model View Matrix According to Center and Orientation:
glTranslated(v[0],v[1],v[2]);
glRotated(t.w, t.x, t.y, t.z);

//Draw Real or Imaginary Clockwise or Counterclockwise Circle:

49

im ? Glyph::DirCircle(rad,sn) : Glyph::DirDashedCircle(rad,sn);

6.5.1 Interpolations and Filtering

Linear, quadric, and cubic interpolations of multivectors are possible by feeding
an array of them to the Interp::Linear|Quadric|Cubic function, and can be a
closed loop or open. These simple interpolating functions are leveraged by the Field
class, described below. Additionally, the Gamma signal processing library is generic
enough that it can be used to filter a set of multivectors, since we have suitably over-
loaded the necessary functions.

6.5.2 The Frame Class

As an example of how to use the algebra in physics simulations and camera navi-
gation, let us consider a localized class Frame which can move, rotate, screw, dilate,
or boost about in a space. A Frame will need an orientation and a position, which
will be stored as a Rotor and a Point in member variables mRot and mPos. It will
also store differentials for each of the transformations in the form of small bivectors
dDrv, dBiv, dDll, dMnk, and dTnv (A Direction Vector, a Euclidean Bivector, a Dual
Line, a Minkowski Plane, and a Tangent Vector, respectively). Finally, it will store ac-
celeration values for each of these differential operators in the form of scalars aDrv,
aBiv, aDll, aMnk, and aTnv.

At each time step of our simulation, Frame calls a step() method which mul-
tiplies all the bivector differentials by their respective acceleration coefficients, and
then uses the bivectors to generate a Translator, Rotor, Motor, Dilator, and Transver-
sor. These versors are applied to the mRot and mPos variables of Frame in methods
called move(), spin(), twist(), scale(), and boost().

A Frame has three methods, right(), up(), and forward(), which return the
local axes x, y , and z as vectors, direction vectors, or tangent vectors. This local
coordinate system is stored in a 4x4 matrix mImage made by rotating the global x,
y , and z axes by mRot using the Op::mat function from Table 16. This matrix, or
image, is updated every step through a call to Op::mat(mRot) within an orient()
method.

Frame also has a mot() method which returns a normalized motor created by
multiplying its translator – Gen::trs(mPos) – by its rotor mRot and normalizing
the result with runit(). This motor uniquely describes a position and orientation
in space relative to the origin. By taking the log of this normalized motor through
the Gen::log_mot method of Table 17, we get an interpolatable dual line which we
can use to twist one reference frame to another. This is the method used to generate
Figure 4.6.

6.5.3 The Chain Class

TheFrame class described above is used to build a classChain, with membersmJoint
and mLink, both arrays of Frames of size mNum. Each joint frame i is paired with a
link frame describing the relative position of the next joint frame i + 1. Forward

50

kinematics are determined at each joint by concatenating the current motor with
the previous link motor and the total transformation of the previous joint.

void fk() {
for (int i = 1; i < mNum; ++i){

Mot m = mJoint[i].mot() * mLink[i-1].mot() * mFrame[i-1].mot();
mFrame[i].mot(m);

}
}

6.5.4 The Field Class

The Field class provides a framework for 3D Lagrangian, semi-Lagrangian, and Eu-
lerian integration techniques acting on a voxel grid of arbitrary data types.

The most common types of vector fields implemented in computer graphics are
really direction vector fields. Field is a templated class which can be composed of
any kind of multivector, direction vector or otherwise. With methods for diffusion,
advection, and maintaining incompressibility (based on J. Stam’s semi-Lagrangian
technique outlined in [28]), it creates dynamic fields of interpolatable and integrat-
able bivector generators in 1, 2 or 3 dimensions. These generators are used to create
a perturbation variance which can be applied to a Field of any other type.

The images in Figure 4.12 were generated using two Field instances: one com-
posed of tangent vectors acting on another composed of points.

6.6 Future Work

6.6.1 Optimization

To solve some of the limitations discussed at the beginning of this section, there is a
potential solution that still avoids the need for a user-conducted optimization pro-
cess: since the precomputed combinatoric functions are currently generated by Lua
scripts, enabling these scripts to “inject” compiled code at run-time is a potentially
good solution35. Such Just-In-Time (JIT) compilation would enable a user to define
a new metric at runtime, and calculate the “unrolled” functions on the fly.36 This not
only adds flexibility to the platform but could increase optimization since even sin-
gle basis blades could be assigned their own function table (currently the smallest
type in the Versor program is a 3 dimensional vector). Such a loose system would be
inherently more topological, since it would retain metric-independence and even
allow for genetic algorithms that experimentally combine metric spaces to invent
new n-dimensional spaces. Metrics could potentially even be adjusted on the fly.
Alternative mappings would be much more available for experimention.

35For a nice example of live compilation, see LuaAV, a powerful runtime audio-visual processing envi-
ronment by my colleagues Wesley Smith and Graham Wakefield. Indeed it is their work which suggests
this kind of approach.

36I am indebted to my colleague Graham Wakefield for this suggestion.

51

6.6.2 Machine Learning and Genetic Algorithms

The Finite State Machine implementation lends itself to predicate calculus meth-
ods for predictive form-making. Given a set of states (Multivectors of varying types
– say a circle, a dual line, and a flat point), an application could examine various
combinations of these and find a “best fit” output state to a given problem. The ap-
pendix serves as an example to the first step in such an algorithm: given a desired
output state, what are the inputs that will generate it with just one operation? Such
a search space could be expanded to two or more operations, thereby generating an
operation graph which could be used for genetic algorithms and morphogenesis of
structures.

6.6.3 Scriptable Interface

Versor can currently be used to build cross-platform stand alone applications in C++.
To be itself truly stand alone, Versor will require a scriptable interface for a wide
range of users. Lua can be used as an extension language in this regard, offering a
simple interface to the underlying code.

6.6.4 Geometric Audio

Versor links with Gamma, a generic signal processing library designed by my col-
league Lance Putnam. This not only opens a door for filtering, spectral analysis, and
granular decomposition of form, but also to geometric calculus of spatialized sound.
Motors and boosts could be applied to position sound in 3D space, or to operate on
the microworld of the sample buffer itself. This suggests a non-Euclidean model of
spatialized audio.

6.6.5 Twistors

Building a system that can handle higher dimensional space is clearly tempting.
There is, for instance, a 6D conformal model of 4D space which enables the im-
plementation of Roger Penrose’s Twistor program.

7 Conclusions

At the beginning of this thesis we outlined three issues faced by the community of GA
researchers: the need for more widespread pedagogy about GA, the relative lack of
integrated multimedia implementations that use GA, and the desire for more rigor-
ous visual experimentation and exploration of GA’s synthetic capacity. These issues
are interconnected: all three point to a limited awareness of how the system might
be employed or deployed.

To explore these unknown possibilities, Versor offers a performance-ready re-
search platform for articulating complex relationships found in nature or imagined.
To help develop our intuition, this project has remained focussed on abstract for-
mal expression through synthesis: – the construction of surfaces, the bending and

52

twisting of meshes, and the leveraging of various differential operators for smooth
movements. By extrapolation of concepts presented in earlier works, such as linear
interpolation of dual lines, we have investigated novel shape generation and anima-
tion techniques. Moving beyond screw deformations, we have a look at the effects
of affine combinations of point pairs and circles, and introduced hyper fluids – dy-
namic fields that enable the animation of 3D warping phenomena. Specific exam-
ples of scientific use of the shapes and spaces described, for instance in quantum
physics, artifical intelligence, and molecular modeling, are left to future work and
examination of the references. Through these applications, the analytic power of
the geometry can be explored.

Certainly the most straight-forward contribution a researcher can make to the
field of Geometric Algebra is to learn it, experiment with it, extrapolate its laws,
play with it, and teach it. Only with unleashed explorations will it achieve its goal of
bridging disciplines. I deliberately refer to this unifying goal as belonging to the alge-
bra itself, since transdisciplinarity seems as inherent a property of its logic as curva-
ture is to a surface. Even just the implementation of CGA is a transdisciplinary exer-
cise, involving higher dimensional hypercomplex mathematics, non-Euclidean ge-
ometry, Lagrangian and Eulerian physics, advanced computer programming tech-
niques, graphics programming, and aesthetic intuitions about form and movement.

The reader is the best judge as to whether we have achieved our goal of develop-
ing an understanding of this still esoteric system. Certainly there is more work to do
in teaching this algebra, but this paper has tried to combine brevity with depth in a
useful way, by guiding the reader from basic Euclidean spaces through to a complete
implementation of the 5 dimensional conformal model. The source code for Versor
itself, available online37, is heavily commented and well documented, and aims to
be a reference for future engineers. Though the learning curve can feel steep, and the
implementation involved, the final algebraic system can generate intricate transfor-
mations which just a few expressions, offering simple methods for the synthesis of
alternative forms and the navigation of alternative spaces. Once we have entered
the space described by the system, geometric intuition develops quickly and cou-
ples with the explicit guidelines of system itself. Things begin to do what one thinks
they should.

One potential use of CGA’s synthetic and analytic features is in the field of biolog-
ical modelling. Immediately, the ease of higher-order deformations suggest a wealth
of possible uses of geometric algebra, from the study of colloidal environments and
biosurfaces to embryology and morphogenesis. The orientability of the algebra is
useful for describing chiralities or “handedness”, to which living organisms are par-
ticularly sensitive at the molecular level. Additionally, the points, point pairs, circles,
and spheres that serve as the fundamental units of the conformal model, as well as
the billowy results of the Möbius transformations that operate upon them, are all
much better at describing natural form than the vectors are, since they can directly
generate closed form solutions without need to resort to implicit surfaces or NURBS.
Researchers such as David Hestenes have shown that natural laws can be compactly
written in the language of GA. Bayro-Corrochano and others have shown that GA can

37www.wolftype.com/versor

53

also be used as a rigorous control system. Coupled with the clear shape-generating
power of the algebra as demonstrated by Rosenhahn, Lasenby, Wareham, Cameron,
Perwass and others, GA is a prime candidate for investigating the complex behav-
iors, symmetries and forms that characterize the organic world.

54

Ba
si

s

m
Bl

ad
e

: b
its

et

 m
W

ei
gh

t :
 D

ou
bl

e

in
vo

lu
tio

n(
) :

 B
as

is

 re
ve

rs
io

n(
) :

 B
as

is

 c
on

ju
ga

tio
n(

) :
 B

as
is

 o
pe

ra
to

r *
(B

as
is

) :
 B

as
is

 o

pe
ra

to
r <

=
(B

as
is

) :
 B

as
is

 o

pe
ra

to
r ^

 (B
as

is
) :

 B
as

is

 o
pe

ra
to

r >
 (B

as
is

) :
 b

oo
l

op
er

at
or

 =
=

(B
as

is
) :

 b
oo

l

M
ul

tiv
ec

to
r

m
Ba

si
s

: B
as

is
*

op
er

at
or

 *(
M

ul
tiv

ec
to

r)
: M

ul
tiv

ec
to

r
 o

pe
ra

to
r <

=
(M

ul
tiv

ec
to

r)
: M

ul
tiv

ec
to

r
 o

pe
ra

to
r ^

 (M
ul

tiv
ec

to
r)

: M
ul

tiv
ec

to
r

 p
us

hM
in

k(
) :

 M
ul

tiv
ec

to
r

 p
op

M
in

k(
) :

 M
ul

tiv
ec

to
r

Su
bs

pa
ce

du
al

()
: S

ub
sp

ac
e

re
je

ct
io

n(
Su

bs
pa

ce
) :

 S
ub

sp
ac

e
pr

oj
ec

tio
n(

Su
bs

pa
ce

) :
 S

ub
sp

ac
e

m
ee

t(S
ub

sp
ac

e)
 :

Su
bs

pa
ce

jo
in

(S
ub

sp
ac

e)
 :

Su
bs

pa
ce

Ve
ct

or
Bi

ve
ct

or
Tr

iv
ec

to
r

C
on

fo
rm

al

bD
ua

l :
 b

oo
l

w
ei

gh
t()

 :
do

ub
le

 d

ir(
) :

 D
ire

ct
io

n
 lo

c(
) :

 S
ph

er
e

R
ou

nd

w
ei

gh
t()

 :
do

ub
le

 d

ir(
) :

 D
ire

ct
io

n
 lo

c(
) :

 S
ph

er
e

Fl
at

w
ei

gh
t()

 :
do

ub
le

 d

ir(
) :

 D
ire

ct
io

n
 lo

c(
) :

 S
ph

er
e

Ta
ng

en
t

w
ei

gh
t()

 :
do

ub
le

 d

ir(
) :

 D
ire

ct
io

n
 lo

c(
) :

 S
ph

er
e

D
ire

ct
io

n

w
ei

gh
t()

 :
do

ub
le

 d

ir(
) :

 D
ire

ct
io

n
 lo

c(
) :

 S
ph

er
e

Po
in

t
Po

in
tP

ai
r

C
irc

le
Sp

he
re

Li
ne

Pl
an

e

Ve
rs

or

sp
in

(M
ul

tiv
ec

to
r)

: M
ul

tiv
ec

to
r

pi
n(

M
ul

tiv
ec

to
r)

: M
ul

tiv
ec

to
r

R
ot

or

sp
ac

el
ik

e(
) :

 R
ot

or
tim

el
ik

e(
) :

 R
ot

or
lig

ht
lik

e(
) :

 R
ot

or
ex

p(
Bi

ve
ct

or
) :

 R
ot

or
lo

g(
) :

 B
iv

ec
to

r

Tr
an

sl
at

or

lo
g(

) :
 D

ire
ct

io
n

M
ot

or

ro
t()

 :
R

ot
or

di
r()

 :
Tr

an
sl

at
or

ex
p(

Li
ne

) :
 M

ot
or

lo
g(

) :
 L

in
e

D
ila

to
r

Tr
an

sv
er

so
r

ex
p(

Po
in

tP
ai

r)
: T

ra
ns

ve
rs

or

Fi
gu

re
7.

1:
A

n
O

bj
ec

t-
O

ri
en

te
d

R
ef

er
en

ce
Im

p
le

m
en

ta
ti

on
of

C
on

fo
rm

al
G

eo
m

et
ri

c
A

lg
eb

ra

55

lib
co

ng
a

ge
ne

ra
te

d
dy

lib

R
ef

er
en

ce
 Im

pl
em

en
ta

tio
n

O
bs

er
ve

r

m
Sc

en
e

: S
ce

ne
*

 m
N

et
w

or
k

: v
ec

to
r<

O
bs

er
ve

r*
>

lis
te

nT
o(

Sc
en

e*
) :

 v
oi

d
 n

et
w

or
kW

ith
(O

bs
er

ve
r*

) :
 v

oi
d

D
ra

w
ab

le

dr
aw

()
: v

oi
d

C
on

ga

Si
ng

le
to

n
In

te
rfa

ce
 to

 d
yl

ib

St
at

e

m
Id

x
: i

nt

 m
W

 :
do

ub
le

*
 m

N
um

 :
in

t

ov
er

lo
ad

ed
 o

pe
ra

to
rs

in
de

x
dy

lib

O
pe

ra
tio

n

fu
nc

tio
no

id
s

St
at

ic
 F

un
ct

io
ns

O
p:

: G
en

::
et

c.
..

O
pe

ra
tio

nG
ra

ph

m
O

pe
ra

tio
n

: v
ec

to
r<

O
pe

ra
tio

n*
>

ad
d(

O
pe

ra
tio

n*
) :

 v
oi

d

G
am

m
a

Si
gn

al
 P

ro
ce

ss
in

g
Li

br
ar

y

Sc
en

e

op
er

at
or

[](
in

t)
: D

ra
w

ab
le

*
 g

ra
ph

()
: O

pe
ra

tio
nG

ra
ph

*
 a

ud
io

()
: A

ud
io

IO

G
LV

G
ra

ph
ic

s
U

se
r I

nt
er

fa
ce

C
on

tro
lle

r

D
ev

ic
eS

er
ve

r

O
SC

 m
es

sa
gi

ng

Fr
am

e

Sp
ec

ia
liz

ed
 T

yp
es Fi
el

d Fi
gu

re
7.

2:
T

h
e

Fi
n

it
e

St
at

e
M

ac
h

in
e

D
at

a-
Fl

ow
Im

p
le

m
en

ta
ti

on
of

Ve
rs

or

56

References

[1] D. Hildenbrand, D. Fontijne, C. Perwass and L. Dorst, Geometric Algebra and
its Application to Computer Graphics, 25th Annual Conference of the European
Association for Computer Graphics, EUROGRAPHICS 2004.

[2] B. Rosenhahn, G. Sommer, R. Klette, Pose Estimation of Free-form Objects,
CHRISTIAN-ALBRECHTS-UNIVERSIT¨AT KIEL, Bericht Nr. 0401 March 2004.

[3] J.M. Selig, Lie Groups and Lie Algebras in Robotics, South Bank University Lon-
don SE1 0AA, U.K. 2003.

[4] E. Bayro-Corrochano, L. Reyes-Lozano, J. Zamora-Esquivel, Conformal Geo-
metric Algebra for Robotic Vision, Journal of Mathematical Imaging and Vision
24: 55–81, 2006. Springer Science + Business Media, Inc. Netherlands.

[6] L.Dorst, D.Fontijne, S. Mann, Geometric Algebra for Computer Science, Morgan
Kaufmann, 2007.

[7] J.Supter, Geometric Algebra Primer, http://www.jaapsuter.com/2003/03/12/geometric-
algebra/.

[8] J.Baez, The Octonions, Bulletin (New Series) of the American Mathematical So-
ciety, Volume 39, Number 2, Pages 145-205, published online 2001.

[9] Hestenes, D. and Sobczyk, G. Clifford Algebra to Geometric Calculus. 1984.

57

[10] Li, H., Hestenes, D., and Rockwood, A. Generalized Homogeneous Coordinates
for Computational Geometry. In Sommer, G., editor, Geometric Computing with
Clifford Algebra, pp 25-58. Springer-Verlag. 2001.

[11] Rida T. Farouki, Hwan Pyo Moon, Bahram Ravani. Minkowski Geometric Alge-
bra of Complex Sets. Geometriae Dedicata 85: pp 283-315, 2001. Kluwer Aca-
demic Publishers. Netherlands.

[12] B. Rosenhahn, Pose Estimation Revisited, Dissertation Thesis, CHRISTIAN-
ALBRECHTS-UNIVERSIT¨AT KIEL, Bericht Nr. 0308 September 2003.

[14] A. Rockwood, D. Hildenbrand, “Engineering Graphics in Geometric Algebra”,
in Geometric Algebra Computing. ed. Eduardo Bayro-Corrochano, G. Scheuer-
mann. Springer-Verlag London Limited 2010.

[15] V. Banarer, C. Perwass, G.Sommer, Design of a Multilayered Feed-Forward Neu-
ral Network Using Hypersphere Neurons. Institut für Informatik und Praktische
Mathematik Christian-Albrechts-Universität zu Kiel, Germany. In COMPUTER
ANALYSIS OF IMAGES AND PATTERNS Lecture Notes in Computer Science,
Volume 2756/2003, 571-578. Springer Berlin / Heidelberg, 2003.

[16] C. Doran, A. Lasenby, Geometric Algebra for Physicists, Cambridge, 2003.

[17] E. Bayro-Corrochano, Geometric Computing: For Wavelet Transforms, Robot Vi-
sion, Learning, Control and Action. Springer Verlag, London. 2010.

[18] M. Ribeiro, C. Paiva, “Transformation and Moving Media: A Unified Approach
Using Geometric Algebra”. In Metamaterials and Plasmonics: Fundamentals,
Modelling, Applications. eds S. Zouhdi, A. Sihvola, A. Vinogradov. NATO Science
for Peace and Security Series B: Physics and Biophysics, 2009, Part II, 63-74.

[19] G.Sommer, B.Rosenhahn, C.Perwass, The Twist Representation of Free Form
Objects, in Geometric Properties for Incomplete Data. eds. Klette, Reinhard and
Kozera, Ryszard and Noakes, Lyle and Weickert, Joachim. Springer Netherlands.
2006, 1, pp 3-22.

[20] D. Hestenes. New Foundations for Classical Mechanics. D. Reidel,
Dordecht/Boston, 2nd Edition, 1998.

[21] A. Naeve, L. Svennsson. Geo-MAP Unification. In Geometric Computing with
Clifford Algebras. ed. G. Sommer, Spinger Verlag, Berlin Heidelberg, 2001.

[22] D. Fontijne. Efficient Implementation of Geometric Algebra. PhD. Thesis, Uni-
versity of Amsterdam, 2007.

[23] G. Sommer, ed. Geometric Computing with Clifford Algebra. Springer. Germany,
2001.

[24] D. Hestenes, J. Holt, The Crystallographic Space Groups in Geometric Algebra.
Journal of Mathematical Physics, 2007.

58

[25] L. Dorst, The Representation of Rigid Body Motions in the Conformal Model of
Geometric Algebra. In B. Rosenhahn et al. (eds.), Human Motion – Understand-
ing, Modelling, Capture, and Animation, 507–529. Springer-Verlag. 2008.

[26] R. Wareham, J. Cameron, A. Lasenby, Applications of Conformal Geometric Al-
gebra in Computer Vision and Graphics. In H. Li, P. J. Olver and G. Sommer
(Eds.): 2004, Lecture Notes in Computer Science 3519, pp. 329–349. Springer-
Verlag Berlin Heidelberg 2005.

[27] D. Hildenbrand, Geometric Computing in Computer Graphics and Robotics us-
ing Conformal Geometric Algebra. PhD Disseratation. 2006.

[28] J. Stam, Real-Time Fluid Dynamics for Games. Proceedings of the Game Devel-
oper Conference, March 2003.

59

Appendix A: List of Operators By Return Type

Operations that Construct a Point

' ' ' ' ' '
Pss ∗ Sph Par ' Cir Par ' Lin Cir ' Sph Cir ' Pln Dll ' Cir Dlp ' Par

' '
Vec ' Par Biv ' Cir

Operations that Construct a Sphere

∧ ∧ ∧ ∧ ∧ ∧
Pss ∗ Pnt Pnt ∧ Cir Par ∧ Par Par ∧ Dll Par ∧ Biv Cir ∧ Dlp Cir ∧ Vec

Operations that Construct a Point Pair

∧ ' ' ∧ ' '
Pss ∗ Cir Pnt ∧ Pnt Pnt ' Cir Pnt ' Lin Pnt ∧ Dlp Dll ' Sph Dlp ' Cir

'
Vec ' Cir

Operations that Construct a Circle

∧ ' ' ∧ ∧ ∧
Pss ∗ Par Pnt ∧ Par Pnt ' Sph Pnt ' Pln Pnt ∧ Dll Par ∧ Dlp Par ∧ Vec

'
Dlp ' Sph

60

Operations that Construct a Line

∧ ∧ ∧ ∧ ∧ '
Inf ∧ Par Pss ∗ Dll Pnt ∧ Drv Pnt ∧ Flp Flp ∧ Dlp Flp ∧ Vec Dlp ' Pln

'
Vec ' Pln

Operations that Construct a Dual Line

' ' ' ' ' '
Inf ' Cir Pss ∗ Lin Pnt ' Drb Par ' Drt Drv ' Sph Flp ' Sph Flp ' Pln

∧ ∧
Dlp ∧ Dlp Dlp ∧ Vec

Operations that Construct a Plane

∧ ∧ ∧ ∧ ∧ ∧
Inf ∧ Cir Pss ∗ Dlp Pnt ∧ Drb Pnt ∧ Lin Par ∧ Drv Par ∧ Flp Lin ∧ Dlp

∧ ∧ ∧
Lin ∧ Vec Flp ∧ Dll Flp ∧ Biv

61

Operations that Construct a Dual Plane

' ' ' ' ' '
Inf ' Par Pss ∗ Pln Pnt ' Drv Pnt ' Dll Pnt ' Trs Par ' Drb Cir ' Drt

' ' ' ' ' ' '
Cir ' Mot Drv ' Cir Drb ' Sph Lin ' Sph Lin ' Pln Flp ' Cir Flp ' Lin

'
Vec ' Dll

Operations that Construct a Flat Point

∧ ' ' ' '
Inf ∧ Pnt Mnk ∗ Trs Dll ' Pln Dlp ' Lin Vec ' Lin Biv ' Pln

Operations that Construct a Vector

' ' ' ' ' ' '
Ori ' Drv Ori ' Dll Ori ' Trs Inf ' Tnv Inf ' Trv Mnk ' Cir Mnk ' Lin

' ' ' ' ' ' '
Pnt ' Biv Pnt ' Rot Par ' Tri Drv ' Tnb Drb ' Tnt Tnv ' Drb Tnb ' Drt

' ' ' ' ' ' '
Tnb ' Mot Lin ' Tnt Flp ' Tnb Dll ' Tri Dlp ' Biv Dlp ' Rot Biv ' Tri

Biv ∗ Tri

62

Operations that Construct a Bivector

' ' ' ' ' ' '
Ori ' Drb Inf ' Tnb Mnk ' Sph Mnk ' Pln Pnt ' Tri Drv ' Tnt Tnv ' Drt

' ' ∧ '
Flp ' Tnt Dlp ' Tri Vec ∧ Vec Vec ' Tri Vec ∗ Tri

Operations that Construct a Trivector

' ' ' ∧
Ori ' Drt Inf ' Tnt Mnk ' Pss Mnk ∗ Pss Vec ∧ Biv

Operations that Construct a Direction Vector

' ∧ ∧
Inf ' Lin Inf ∗ Lin Inf ∧ Dlp Inf ∗ Dlp Inf ∧ Vec Inf ∗ Vec Pss ∗ Drb

' '
Drb ∗ Tri Drt ∗ Pln Drt ∗ Dll Drt ∗ Biv Dlp ' Drb Vec ' Drb

Operations that Construct a Direction Bivector

' ∧ ∧
Inf ' Pln Inf ∗ Pln Inf ∧ Dll Inf ∗ Dll Inf ∧ Biv Inf ∗ Biv Pss ∗ Drv

∧ ∧
Drv ∧ Dlp Drv ∧ Vec Drv ∗ Tri Drt ∗ Lin Drt ∗ Dlp Drt ∗ Vec

63

Operations that Construct a Direction Trivector

' ∧ ∧ ∧ ∧
Inf ' Pss Inf ∗ Pss Inf ∧ Tri Inf ∗ Tri Drv ∧ Dll Drv ∧ Biv Drb ∧ Dlp

∧ ∧ ∧ ∧
Drb ∧ Vec Dll ∧ Dll Dll ∧ Biv Dlp ∧ Tri

Operations that Construct a Tangent Vector at Origin

∧ '
Ori ∧ Vec Ori ∗ Vec Pss ∗ Tnb Tnb ∗ Tri Tnt ∗ Biv Vec ' Tnb

Operations that Construct a Tangent Bivector at Origin

∧ ∧
Ori ∧ Biv Ori ∗ Biv Pss ∗ Tnv Tnv ∧ Vec Tnv ∗ Tri Tnt ∗ Vec

Operations that Construct a Tangent Trivector at Origin

' ∧ ∧ ∧
Ori ' Pss Ori ∗ Pss Ori ∧ Tri Ori ∗ Tri Tnv ∧ Biv Tnb ∧ Vec

Operations that Construct a Rotor

' '
Tnv ' Mot Vec ∗ Vec Biv ∗ Biv Mot ' Biv

64

Operations that Construct a Translator

' ' '
Mnk ∗ Flp Flp ∗ Flp Dll ' Mot Biv ' Mot Trv ' Drv

Operations that Construct a Dilator

Ori ∗ Inf Drt ∗ Tnt

Operations that Construct a Motor

∧
Lin ∗ Lin Dll ∗ Dll Dll ∗ Biv Dll ∗ Rot Rot ∧ Trs Rot ∗ Trs

Operations that Construct a Transversor

' '
Trs ' Tnv Mot ' Tnv

Operations that Construct a Motor Dilator

∧
Par ∗ Drv Cir ∗ Drb Dil ∧ Mot Dil ∗ Mot

Operations that Construct a Minkowski Plane

∧
Ori ∧ Inf Pss ∗ Tri

65

Operations that Construct a Pseudoscalar

∧ ∧ ∧ ∧ ∧ ∧ ∧
Ori ∧ Sph Ori ∧ Drt Ori ∧ Pln Inf ∧ Sph Inf ∧ Tnt Mnk ∧ Cir Mnk ∧ Tri

∧ ∧ ∧ ∧ ∧ ∧
Mnk ∗ Tri Pnt ∧ Sph Pnt ∧ Drt Pnt ∧ Tnt Pnt ∧ Pln Par ∧ Cir Par ∧ Drb

∧ ∧ ∧ ∧ ∧ ∧ ∧
Par ∧ Tnb Par ∧ Lin Par ∧ Tri Cir ∧ Drv Cir ∧ Tnv Cir ∧ Flp Cir ∧ Dll

∧ ∧ ∧ ∧ ∧ ∧ ∧
Cir ∧ Biv Sph ∧ Dlp Sph ∧ Vec Drv ∧ Tnb Drb ∧ Tnv Tnv ∧ Lin Tnb ∧ Flp

∧ ∧ ∧ ∧ ∧ ∧ ∧
Tnb ∧ Dll Tnt ∧ Dlp Lin ∧ Dll Lin ∧ Biv Pln ∧ Dlp Pln ∧ Vec Flp ∧ Tri

Operations that Construct an Origin

' ' '
Pss ∗ Tnt Tnt ∗ Tri Vec ' Tnv Vec ' Trv Biv ' Tnb

Operations that Construct an Infinity

' ' ' ' '
Pss ∗ Drt Drv ' Lin Drb ' Pln Drt ∗ Tri Dll ' Drb Dll ' Lin Dlp ' Mnk

' ' ' ' ' ' '
Dlp ' Drv Dlp ' Flp Dlp ' Trs Dlp ' Dil Vec ' Drv Vec ' Flp Vec ' Trs

' ' ' '
Biv ' Drb Biv ' Lin Tri ' Pln Tri ' Mot

66

